| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4367 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3920 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: sseq0 4369 0dif 4371 eq0rdvALT 4374 ssdisj 4426 disjpss 4427 dfopif 4837 iunxdif3 5062 fr0 5619 poirr2 6100 sofld 6163 f00 6745 fvmptopab 7446 tfindsg 7840 findsg 7876 frxp 8108 map0b 8859 sbthlem7 9063 ssfi 9143 fi0 9378 cantnflem1 9649 rankeq0b 9820 grur1a 10779 ixxdisj 13328 icodisj 13444 ioodisj 13450 uzdisj 13565 nn0disj 13612 hashf1lem2 14428 swrd0 14630 xptrrel 14953 sumz 15695 sumss 15697 fsum2dlem 15743 prod1 15917 prodss 15920 fprodss 15921 fprod2dlem 15953 cntzval 19260 oppglsm 19579 efgval 19654 islss 20847 00lss 20854 mplsubglem 21915 ntrcls0 22970 neindisj2 23017 hauscmplem 23300 fbdmn0 23728 fbncp 23733 opnfbas 23736 fbasfip 23762 fbunfip 23763 fgcl 23772 supfil 23789 ufinffr 23823 alexsubALTlem2 23942 metnrmlem3 24757 itg1addlem4 25607 uc1pval 26052 mon1pval 26054 pserulm 26338 vtxdun 29416 vtxdginducedm1 29478 difres 32536 imadifxp 32537 swrdrndisj 32886 cycpmco2f1 33088 erlval 33216 ssdifidllem 33434 ply1dg3rt0irred 33558 esumrnmpt2 34065 truae 34240 carsgclctunlem2 34317 acycgr0v 35142 prclisacycgr 35145 derangsn 35164 poimirlem3 37624 ismblfin 37662 pcl0N 39923 pcl0bN 39924 coeq0i 42748 eldioph2lem2 42756 eldioph4b 42806 oe0suclim 43273 ntrk2imkb 44033 ntrk0kbimka 44035 ssin0 45056 iccdifprioo 45521 sumnnodd 45635 sge0split 46414 iscnrm3llem2 48942 0setrec 49697 |
| Copyright terms: Public domain | W3C validator |