Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4328 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: sseq0 4330 0dif 4332 eq0rdvALT 4336 ssdisj 4390 disjpss 4391 dfopifOLD 4798 iunxdif3 5020 fr0 5559 poirr2 6018 sofld 6079 f00 6640 tfindsg 7682 findsg 7720 frxp 7938 map0b 8629 sbthlem7 8829 phplem2 8893 ssfi 8918 fi0 9109 cantnflem1 9377 rankeq0b 9549 grur1a 10506 ixxdisj 13023 icodisj 13137 ioodisj 13143 uzdisj 13258 nn0disj 13301 hashf1lem2 14098 swrd0 14299 xptrrel 14619 sumz 15362 sumss 15364 fsum2dlem 15410 prod1 15582 prodss 15585 fprodss 15586 fprod2dlem 15618 cntzval 18842 oppglsm 19162 efgval 19238 islss 20111 00lss 20118 mplsubglem 21115 ntrcls0 22135 neindisj2 22182 hauscmplem 22465 fbdmn0 22893 fbncp 22898 opnfbas 22901 fbasfip 22927 fbunfip 22928 fgcl 22937 supfil 22954 ufinffr 22988 alexsubALTlem2 23107 metnrmlem3 23930 itg1addlem4 24768 itg1addlem4OLD 24769 uc1pval 25209 mon1pval 25211 pserulm 25486 vtxdun 27751 vtxdginducedm1 27813 difres 30840 imadifxp 30841 swrdrndisj 31131 cycpmco2f1 31293 esumrnmpt2 31936 truae 32111 carsgclctunlem2 32186 acycgr0v 33010 prclisacycgr 33013 derangsn 33032 poimirlem3 35707 ismblfin 35745 pcl0N 37863 pcl0bN 37864 coeq0i 40491 eldioph2lem2 40499 eldioph4b 40549 ntrk2imkb 41536 ntrk0kbimka 41538 ssin0 42492 iccdifprioo 42944 sumnnodd 43061 sge0split 43837 iscnrm3llem2 46132 0setrec 46295 |
Copyright terms: Public domain | W3C validator |