| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4351 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3902 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3905 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: sseq0 4353 0dif 4355 eq0rdvALT 4358 ssdisj 4410 disjpss 4411 dfopif 4822 iunxdif3 5043 fr0 5594 poirr2 6071 sofld 6134 f00 6705 fvmptopab 7401 tfindsg 7791 findsg 7827 frxp 8056 map0b 8807 sbthlem7 9006 ssfi 9082 fi0 9304 cantnflem1 9579 rankeq0b 9750 grur1a 10707 ixxdisj 13257 icodisj 13373 ioodisj 13379 uzdisj 13494 nn0disj 13541 hashf1lem2 14360 swrd0 14563 xptrrel 14884 sumz 15626 sumss 15628 fsum2dlem 15674 prod1 15848 prodss 15851 fprodss 15852 fprod2dlem 15884 cntzval 19231 oppglsm 19552 efgval 19627 islss 20865 00lss 20872 mplsubglem 21934 ntrcls0 22989 neindisj2 23036 hauscmplem 23319 fbdmn0 23747 fbncp 23752 opnfbas 23755 fbasfip 23781 fbunfip 23782 fgcl 23791 supfil 23808 ufinffr 23842 alexsubALTlem2 23961 metnrmlem3 24775 itg1addlem4 25625 uc1pval 26070 mon1pval 26072 pserulm 26356 vtxdun 29458 vtxdginducedm1 29520 difres 32575 imadifxp 32576 swrdrndisj 32933 cycpmco2f1 33088 erlval 33220 ssdifidllem 33416 ply1dg3rt0irred 33541 esumrnmpt2 34076 truae 34251 carsgclctunlem2 34327 acycgr0v 35180 prclisacycgr 35183 derangsn 35202 poimirlem3 37662 ismblfin 37700 pcl0N 39960 pcl0bN 39961 coeq0i 42785 eldioph2lem2 42793 eldioph4b 42843 oe0suclim 43309 ntrk2imkb 44069 ntrk0kbimka 44071 ssin0 45091 iccdifprioo 45555 sumnnodd 45669 sge0split 46446 iscnrm3llem2 48980 0setrec 49735 |
| Copyright terms: Public domain | W3C validator |