![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4406 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ⊆ wss 3962 ∅c0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-dif 3965 df-ss 3979 df-nul 4339 |
This theorem is referenced by: sseq0 4408 0dif 4410 eq0rdvALT 4413 ssdisj 4465 disjpss 4466 dfopif 4874 iunxdif3 5099 fr0 5666 poirr2 6146 sofld 6208 f00 6790 fvmptopab 7486 tfindsg 7881 findsg 7919 frxp 8149 map0b 8921 sbthlem7 9127 ssfi 9211 phplem2OLD 9252 fi0 9457 cantnflem1 9726 rankeq0b 9897 grur1a 10856 ixxdisj 13398 icodisj 13512 ioodisj 13518 uzdisj 13633 nn0disj 13680 hashf1lem2 14491 swrd0 14692 xptrrel 15015 sumz 15754 sumss 15756 fsum2dlem 15802 prod1 15976 prodss 15979 fprodss 15980 fprod2dlem 16012 cntzval 19351 oppglsm 19674 efgval 19749 islss 20949 00lss 20956 mplsubglem 22036 ntrcls0 23099 neindisj2 23146 hauscmplem 23429 fbdmn0 23857 fbncp 23862 opnfbas 23865 fbasfip 23891 fbunfip 23892 fgcl 23901 supfil 23918 ufinffr 23952 alexsubALTlem2 24071 metnrmlem3 24896 itg1addlem4 25747 itg1addlem4OLD 25748 uc1pval 26193 mon1pval 26195 pserulm 26479 vtxdun 29513 vtxdginducedm1 29575 difres 32619 imadifxp 32620 swrdrndisj 32926 cycpmco2f1 33126 erlval 33244 ssdifidllem 33463 ply1dg3rt0irred 33586 esumrnmpt2 34048 truae 34223 carsgclctunlem2 34300 acycgr0v 35132 prclisacycgr 35135 derangsn 35154 poimirlem3 37609 ismblfin 37647 pcl0N 39904 pcl0bN 39905 coeq0i 42740 eldioph2lem2 42748 eldioph4b 42798 oe0suclim 43266 ntrk2imkb 44026 ntrk0kbimka 44028 ssin0 44994 iccdifprioo 45468 sumnnodd 45585 sge0split 46364 iscnrm3llem2 48746 0setrec 48934 |
Copyright terms: Public domain | W3C validator |