| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4350 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3901 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: sseq0 4352 0dif 4354 eq0rdvALT 4357 ssdisj 4409 disjpss 4410 dfopif 4821 iunxdif3 5045 fr0 5597 poirr2 6075 sofld 6139 f00 6710 fvmptopab 7407 tfindsg 7797 findsg 7833 frxp 8062 map0b 8813 sbthlem7 9013 ssfi 9089 fi0 9311 cantnflem1 9586 rankeq0b 9760 grur1a 10717 ixxdisj 13262 icodisj 13378 ioodisj 13384 uzdisj 13499 nn0disj 13546 hashf1lem2 14365 swrd0 14568 xptrrel 14889 sumz 15631 sumss 15633 fsum2dlem 15679 prod1 15853 prodss 15856 fprodss 15857 fprod2dlem 15889 cntzval 19235 oppglsm 19556 efgval 19631 islss 20869 00lss 20876 mplsubglem 21937 ntrcls0 22992 neindisj2 23039 hauscmplem 23322 fbdmn0 23750 fbncp 23755 opnfbas 23758 fbasfip 23784 fbunfip 23785 fgcl 23794 supfil 23811 ufinffr 23845 alexsubALTlem2 23964 metnrmlem3 24778 itg1addlem4 25628 uc1pval 26073 mon1pval 26075 pserulm 26359 vtxdun 29462 vtxdginducedm1 29524 difres 32582 imadifxp 32583 swrdrndisj 32945 cycpmco2f1 33100 erlval 33232 ssdifidllem 33428 ply1dg3rt0irred 33553 esumrnmpt2 34102 truae 34277 carsgclctunlem2 34353 acycgr0v 35213 prclisacycgr 35216 derangsn 35235 poimirlem3 37683 ismblfin 37721 pcl0N 40041 pcl0bN 40042 coeq0i 42870 eldioph2lem2 42878 eldioph4b 42928 oe0suclim 43394 ntrk2imkb 44154 ntrk0kbimka 44156 ssin0 45176 iccdifprioo 45640 sumnnodd 45754 sge0split 46531 iscnrm3llem2 49074 0setrec 49829 |
| Copyright terms: Public domain | W3C validator |