| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4364 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: sseq0 4366 0dif 4368 eq0rdvALT 4371 ssdisj 4423 disjpss 4424 dfopif 4834 iunxdif3 5059 fr0 5616 poirr2 6097 sofld 6160 f00 6742 fvmptopab 7443 tfindsg 7837 findsg 7873 frxp 8105 map0b 8856 sbthlem7 9057 ssfi 9137 fi0 9371 cantnflem1 9642 rankeq0b 9813 grur1a 10772 ixxdisj 13321 icodisj 13437 ioodisj 13443 uzdisj 13558 nn0disj 13605 hashf1lem2 14421 swrd0 14623 xptrrel 14946 sumz 15688 sumss 15690 fsum2dlem 15736 prod1 15910 prodss 15913 fprodss 15914 fprod2dlem 15946 cntzval 19253 oppglsm 19572 efgval 19647 islss 20840 00lss 20847 mplsubglem 21908 ntrcls0 22963 neindisj2 23010 hauscmplem 23293 fbdmn0 23721 fbncp 23726 opnfbas 23729 fbasfip 23755 fbunfip 23756 fgcl 23765 supfil 23782 ufinffr 23816 alexsubALTlem2 23935 metnrmlem3 24750 itg1addlem4 25600 uc1pval 26045 mon1pval 26047 pserulm 26331 vtxdun 29409 vtxdginducedm1 29471 difres 32529 imadifxp 32530 swrdrndisj 32879 cycpmco2f1 33081 erlval 33209 ssdifidllem 33427 ply1dg3rt0irred 33551 esumrnmpt2 34058 truae 34233 carsgclctunlem2 34310 acycgr0v 35135 prclisacycgr 35138 derangsn 35157 poimirlem3 37617 ismblfin 37655 pcl0N 39916 pcl0bN 39917 coeq0i 42741 eldioph2lem2 42749 eldioph4b 42799 oe0suclim 43266 ntrk2imkb 44026 ntrk0kbimka 44028 ssin0 45049 iccdifprioo 45514 sumnnodd 45628 sge0split 46407 iscnrm3llem2 48938 0setrec 49693 |
| Copyright terms: Public domain | W3C validator |