| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4376 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-dif 3929 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: sseq0 4378 0dif 4380 eq0rdvALT 4383 ssdisj 4435 disjpss 4436 dfopif 4846 iunxdif3 5071 fr0 5632 poirr2 6113 sofld 6176 f00 6760 fvmptopab 7461 tfindsg 7856 findsg 7893 frxp 8125 map0b 8897 sbthlem7 9103 ssfi 9187 phplem2OLD 9229 fi0 9432 cantnflem1 9703 rankeq0b 9874 grur1a 10833 ixxdisj 13377 icodisj 13493 ioodisj 13499 uzdisj 13614 nn0disj 13661 hashf1lem2 14474 swrd0 14676 xptrrel 14999 sumz 15738 sumss 15740 fsum2dlem 15786 prod1 15960 prodss 15963 fprodss 15964 fprod2dlem 15996 cntzval 19304 oppglsm 19623 efgval 19698 islss 20891 00lss 20898 mplsubglem 21959 ntrcls0 23014 neindisj2 23061 hauscmplem 23344 fbdmn0 23772 fbncp 23777 opnfbas 23780 fbasfip 23806 fbunfip 23807 fgcl 23816 supfil 23833 ufinffr 23867 alexsubALTlem2 23986 metnrmlem3 24801 itg1addlem4 25652 uc1pval 26097 mon1pval 26099 pserulm 26383 vtxdun 29461 vtxdginducedm1 29523 difres 32581 imadifxp 32582 swrdrndisj 32933 cycpmco2f1 33135 erlval 33253 ssdifidllem 33471 ply1dg3rt0irred 33595 esumrnmpt2 34099 truae 34274 carsgclctunlem2 34351 acycgr0v 35170 prclisacycgr 35173 derangsn 35192 poimirlem3 37647 ismblfin 37685 pcl0N 39941 pcl0bN 39942 coeq0i 42776 eldioph2lem2 42784 eldioph4b 42834 oe0suclim 43301 ntrk2imkb 44061 ntrk0kbimka 44063 ssin0 45079 iccdifprioo 45545 sumnnodd 45659 sge0split 46438 iscnrm3llem2 48924 0setrec 49568 |
| Copyright terms: Public domain | W3C validator |