![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4167 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | biimpi 208 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ⊆ wss 3767 ∅c0 4113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 df-dif 3770 df-in 3774 df-ss 3781 df-nul 4114 |
This theorem is referenced by: sseq0 4169 0dif 4171 eq0rdv 4173 ssdisj 4220 disjpss 4221 dfopif 4588 iunxdif3 4795 fr0 5289 poirr2 5736 sofld 5796 f00 6300 tfindsg 7292 findsg 7325 frxp 7522 map0b 8133 sbthlem7 8316 phplem2 8380 fi0 8566 cantnflem1 8834 rankeq0b 8971 grur1a 9927 ixxdisj 12435 icodisj 12545 ioodisj 12552 uzdisj 12663 nn0disj 12706 hashf1lem2 13485 swrd0 13683 xptrrel 14058 sumz 14790 sumss 14792 fsum2dlem 14836 prod1 15007 prodss 15010 fprodss 15011 fprod2dlem 15043 cntzval 18062 symgbas 18108 oppglsm 18366 efgval 18439 islss 19249 00lss 19256 mplsubglem 19753 ntrcls0 21205 neindisj2 21252 hauscmplem 21534 fbdmn0 21962 fbncp 21967 opnfbas 21970 fbasfip 21996 fbunfip 21997 fgcl 22006 supfil 22023 ufinffr 22057 alexsubALTlem2 22176 metnrmlem3 22988 itg1addlem4 23803 uc1pval 24236 mon1pval 24238 pserulm 24513 vtxdun 26722 vtxdginducedm1 26784 difres 29921 imadifxp 29922 esumrnmpt2 30637 truae 30813 carsgclctunlem2 30888 derangsn 31660 poimirlem3 33892 ismblfin 33930 pcl0N 35934 pcl0bN 35935 coeq0i 38089 eldioph2lem2 38097 eldioph4b 38148 ntrk2imkb 39104 ntrk0kbimka 39106 ssin0 39969 iccdifprioo 40474 sumnnodd 40593 sge0split 41356 0setrec 43236 |
Copyright terms: Public domain | W3C validator |