| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4354 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3908 df-ss 3922 df-nul 4287 |
| This theorem is referenced by: sseq0 4356 0dif 4358 eq0rdvALT 4361 ssdisj 4413 disjpss 4414 dfopif 4824 iunxdif3 5047 fr0 5601 poirr2 6077 sofld 6140 f00 6710 fvmptopab 7408 tfindsg 7801 findsg 7837 frxp 8066 map0b 8817 sbthlem7 9017 ssfi 9097 fi0 9329 cantnflem1 9604 rankeq0b 9775 grur1a 10732 ixxdisj 13281 icodisj 13397 ioodisj 13403 uzdisj 13518 nn0disj 13565 hashf1lem2 14381 swrd0 14583 xptrrel 14905 sumz 15647 sumss 15649 fsum2dlem 15695 prod1 15869 prodss 15872 fprodss 15873 fprod2dlem 15905 cntzval 19218 oppglsm 19539 efgval 19614 islss 20855 00lss 20862 mplsubglem 21924 ntrcls0 22979 neindisj2 23026 hauscmplem 23309 fbdmn0 23737 fbncp 23742 opnfbas 23745 fbasfip 23771 fbunfip 23772 fgcl 23781 supfil 23798 ufinffr 23832 alexsubALTlem2 23951 metnrmlem3 24766 itg1addlem4 25616 uc1pval 26061 mon1pval 26063 pserulm 26347 vtxdun 29445 vtxdginducedm1 29507 difres 32562 imadifxp 32563 swrdrndisj 32912 cycpmco2f1 33079 erlval 33208 ssdifidllem 33403 ply1dg3rt0irred 33527 esumrnmpt2 34034 truae 34209 carsgclctunlem2 34286 acycgr0v 35120 prclisacycgr 35123 derangsn 35142 poimirlem3 37602 ismblfin 37640 pcl0N 39901 pcl0bN 39902 coeq0i 42726 eldioph2lem2 42734 eldioph4b 42784 oe0suclim 43250 ntrk2imkb 44010 ntrk0kbimka 44012 ssin0 45033 iccdifprioo 45498 sumnnodd 45612 sge0split 46391 iscnrm3llem2 48935 0setrec 49690 |
| Copyright terms: Public domain | W3C validator |