![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss0 | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4424 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: sseq0 4426 0dif 4428 eq0rdvALT 4431 ssdisj 4483 disjpss 4484 dfopif 4894 iunxdif3 5118 fr0 5678 poirr2 6156 sofld 6218 f00 6803 fvmptopab 7504 tfindsg 7898 findsg 7937 frxp 8167 map0b 8941 sbthlem7 9155 ssfi 9240 phplem2OLD 9281 fi0 9489 cantnflem1 9758 rankeq0b 9929 grur1a 10888 ixxdisj 13422 icodisj 13536 ioodisj 13542 uzdisj 13657 nn0disj 13701 hashf1lem2 14505 swrd0 14706 xptrrel 15029 sumz 15770 sumss 15772 fsum2dlem 15818 prod1 15992 prodss 15995 fprodss 15996 fprod2dlem 16028 cntzval 19361 oppglsm 19684 efgval 19759 islss 20955 00lss 20962 mplsubglem 22042 ntrcls0 23105 neindisj2 23152 hauscmplem 23435 fbdmn0 23863 fbncp 23868 opnfbas 23871 fbasfip 23897 fbunfip 23898 fgcl 23907 supfil 23924 ufinffr 23958 alexsubALTlem2 24077 metnrmlem3 24902 itg1addlem4 25753 itg1addlem4OLD 25754 uc1pval 26199 mon1pval 26201 pserulm 26483 vtxdun 29517 vtxdginducedm1 29579 difres 32622 imadifxp 32623 swrdrndisj 32924 cycpmco2f1 33117 erlval 33230 ssdifidllem 33449 ply1dg3rt0irred 33572 esumrnmpt2 34032 truae 34207 carsgclctunlem2 34284 acycgr0v 35116 prclisacycgr 35119 derangsn 35138 poimirlem3 37583 ismblfin 37621 pcl0N 39879 pcl0bN 39880 coeq0i 42709 eldioph2lem2 42717 eldioph4b 42767 oe0suclim 43239 ntrk2imkb 43999 ntrk0kbimka 44001 ssin0 44957 iccdifprioo 45434 sumnnodd 45551 sge0split 46330 iscnrm3llem2 48630 0setrec 48796 |
Copyright terms: Public domain | W3C validator |