MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equncom Structured version   Visualization version   GIF version

Theorem equncom 4068
Description: If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4068 was automatically derived from equncomVD 42161 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
Assertion
Ref Expression
equncom (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

Proof of Theorem equncom
StepHypRef Expression
1 uncom 4067 . 2 (𝐵𝐶) = (𝐶𝐵)
21eqeq2i 2750 1 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  cun 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871
This theorem is referenced by:  equncomi  4069  equncomiVD  42162
  Copyright terms: Public domain W3C validator