MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equncom Structured version   Visualization version   GIF version

Theorem equncom 4172
Description: If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4172 was automatically derived from equncomVD 44881 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
Assertion
Ref Expression
equncom (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

Proof of Theorem equncom
StepHypRef Expression
1 uncom 4171 . 2 (𝐵𝐶) = (𝐶𝐵)
21eqeq2i 2750 1 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  cun 3964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-un 3971
This theorem is referenced by:  equncomi  4173  equncomiVD  44882
  Copyright terms: Public domain W3C validator