| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncom | Structured version Visualization version GIF version | ||
| Description: If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4139 was automatically derived from equncomVD 44845 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncom | ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4138 | . 2 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 2 | 1 | eqeq2i 2747 | 1 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 |
| This theorem is referenced by: equncomi 4140 equncomiVD 44846 |
| Copyright terms: Public domain | W3C validator |