![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > equncomiVD | Structured version Visualization version GIF version |
Description: Inference form of equncom 4182. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. equncomi 4183 is equncomiVD 44840 without
virtual deductions and was automatically derived from equncomiVD 44840.
|
Ref | Expression |
---|---|
equncomiVD.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
equncomiVD | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equncomiVD.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | equncom 4182 | . . 3 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
3 | 2 | biimpi 216 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → 𝐴 = (𝐶 ∪ 𝐵)) |
4 | 1, 3 | e0a 44743 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |