Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equncomiVD Structured version   Visualization version   GIF version

Theorem equncomiVD 42378
Description: Inference form of equncom 4084. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncomi 4085 is equncomiVD 42378 without virtual deductions and was automatically derived from equncomiVD 42378.
h1:: 𝐴 = (𝐵𝐶)
qed:1: 𝐴 = (𝐶𝐵)
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
equncomiVD.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
equncomiVD 𝐴 = (𝐶𝐵)

Proof of Theorem equncomiVD
StepHypRef Expression
1 equncomiVD.1 . 2 𝐴 = (𝐵𝐶)
2 equncom 4084 . . 3 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
32biimpi 215 . 2 (𝐴 = (𝐵𝐶) → 𝐴 = (𝐶𝐵))
41, 3e0a 42281 1 𝐴 = (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator