![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > equncomVD | Structured version Visualization version GIF version |
Description: If a class equals the union of two other classes, then it equals the union
of those two classes commuted. The following User's Proof is a Virtual
Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. equncom 4114 is equncomVD 43140 without
virtual deductions and was automatically derived from equncomVD 43140.
|
Ref | Expression |
---|---|
equncomVD | ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 42846 | . . . 4 ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐵 ∪ 𝐶) ) | |
2 | uncom 4113 | . . . 4 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
3 | eqeq1 2740 | . . . . 5 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = (𝐶 ∪ 𝐵) ↔ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵))) | |
4 | 3 | biimprd 247 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → ((𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) → 𝐴 = (𝐶 ∪ 𝐵))) |
5 | 1, 2, 4 | e10 42966 | . . 3 ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐶 ∪ 𝐵) ) |
6 | 5 | in1 42843 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → 𝐴 = (𝐶 ∪ 𝐵)) |
7 | idn1 42846 | . . . 4 ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐶 ∪ 𝐵) ) | |
8 | eqeq2 2748 | . . . . 5 ⊢ ((𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) → (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵))) | |
9 | 8 | biimprcd 249 | . . . 4 ⊢ (𝐴 = (𝐶 ∪ 𝐵) → ((𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶))) |
10 | 7, 2, 9 | e10 42966 | . . 3 ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐵 ∪ 𝐶) ) |
11 | 10 | in1 42843 | . 2 ⊢ (𝐴 = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶)) |
12 | 6, 11 | impbii 208 | 1 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∪ cun 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3447 df-un 3915 df-vd1 42842 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |