Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equncomVD Structured version   Visualization version   GIF version

Theorem equncomVD 44839
Description: If a class equals the union of two other classes, then it equals the union of those two classes commuted. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncom 4182 is equncomVD 44839 without virtual deductions and was automatically derived from equncomVD 44839.
1:: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐵𝐶)   )
2:: (𝐵𝐶) = (𝐶𝐵)
3:1,2: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐶𝐵)   )
4:3: (𝐴 = (𝐵𝐶) → 𝐴 = (𝐶𝐵))
5:: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐶𝐵)   )
6:5,2: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐵𝐶)   )
7:6: (𝐴 = (𝐶𝐵) → 𝐴 = (𝐵𝐶))
8:4,7: (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
(Contributed by Alan Sare, 17-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equncomVD (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

Proof of Theorem equncomVD
StepHypRef Expression
1 idn1 44545 . . . 4 (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐵𝐶)   )
2 uncom 4181 . . . 4 (𝐵𝐶) = (𝐶𝐵)
3 eqeq1 2744 . . . . 5 (𝐴 = (𝐵𝐶) → (𝐴 = (𝐶𝐵) ↔ (𝐵𝐶) = (𝐶𝐵)))
43biimprd 248 . . . 4 (𝐴 = (𝐵𝐶) → ((𝐵𝐶) = (𝐶𝐵) → 𝐴 = (𝐶𝐵)))
51, 2, 4e10 44665 . . 3 (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐶𝐵)   )
65in1 44542 . 2 (𝐴 = (𝐵𝐶) → 𝐴 = (𝐶𝐵))
7 idn1 44545 . . . 4 (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐶𝐵)   )
8 eqeq2 2752 . . . . 5 ((𝐵𝐶) = (𝐶𝐵) → (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵)))
98biimprcd 250 . . . 4 (𝐴 = (𝐶𝐵) → ((𝐵𝐶) = (𝐶𝐵) → 𝐴 = (𝐵𝐶)))
107, 2, 9e10 44665 . . 3 (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐵𝐶)   )
1110in1 44542 . 2 (𝐴 = (𝐶𝐵) → 𝐴 = (𝐵𝐶))
126, 11impbii 209 1 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-vd1 44541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator