Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equncomVD Structured version   Visualization version   GIF version

Theorem equncomVD 42377
Description: If a class equals the union of two other classes, then it equals the union of those two classes commuted. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncom 4084 is equncomVD 42377 without virtual deductions and was automatically derived from equncomVD 42377.
1:: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐵𝐶)   )
2:: (𝐵𝐶) = (𝐶𝐵)
3:1,2: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐶𝐵)   )
4:3: (𝐴 = (𝐵𝐶) → 𝐴 = (𝐶𝐵))
5:: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐶𝐵)   )
6:5,2: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐵𝐶)   )
7:6: (𝐴 = (𝐶𝐵) → 𝐴 = (𝐵𝐶))
8:4,7: (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
(Contributed by Alan Sare, 17-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equncomVD (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

Proof of Theorem equncomVD
StepHypRef Expression
1 idn1 42083 . . . 4 (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐵𝐶)   )
2 uncom 4083 . . . 4 (𝐵𝐶) = (𝐶𝐵)
3 eqeq1 2742 . . . . 5 (𝐴 = (𝐵𝐶) → (𝐴 = (𝐶𝐵) ↔ (𝐵𝐶) = (𝐶𝐵)))
43biimprd 247 . . . 4 (𝐴 = (𝐵𝐶) → ((𝐵𝐶) = (𝐶𝐵) → 𝐴 = (𝐶𝐵)))
51, 2, 4e10 42203 . . 3 (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐶𝐵)   )
65in1 42080 . 2 (𝐴 = (𝐵𝐶) → 𝐴 = (𝐶𝐵))
7 idn1 42083 . . . 4 (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐶𝐵)   )
8 eqeq2 2750 . . . . 5 ((𝐵𝐶) = (𝐶𝐵) → (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵)))
98biimprcd 249 . . . 4 (𝐴 = (𝐶𝐵) → ((𝐵𝐶) = (𝐶𝐵) → 𝐴 = (𝐵𝐶)))
107, 2, 9e10 42203 . . 3 (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐵𝐶)   )
1110in1 42080 . 2 (𝐴 = (𝐶𝐵) → 𝐴 = (𝐵𝐶))
126, 11impbii 208 1 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-vd1 42079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator