| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > equncomVD | Structured version Visualization version GIF version | ||
Description: If a class equals the union of two other classes, then it equals the union
of those two classes commuted. The following User's Proof is a Virtual
Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. equncom 4134 is equncomVD 44840 without
virtual deductions and was automatically derived from equncomVD 44840.
|
| Ref | Expression |
|---|---|
| equncomVD | ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44547 | . . . 4 ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐵 ∪ 𝐶) ) | |
| 2 | uncom 4133 | . . . 4 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 3 | eqeq1 2739 | . . . . 5 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = (𝐶 ∪ 𝐵) ↔ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵))) | |
| 4 | 3 | biimprd 248 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → ((𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) → 𝐴 = (𝐶 ∪ 𝐵))) |
| 5 | 1, 2, 4 | e10 44667 | . . 3 ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐶 ∪ 𝐵) ) |
| 6 | 5 | in1 44544 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → 𝐴 = (𝐶 ∪ 𝐵)) |
| 7 | idn1 44547 | . . . 4 ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐶 ∪ 𝐵) ) | |
| 8 | eqeq2 2747 | . . . . 5 ⊢ ((𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) → (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵))) | |
| 9 | 8 | biimprcd 250 | . . . 4 ⊢ (𝐴 = (𝐶 ∪ 𝐵) → ((𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶))) |
| 10 | 7, 2, 9 | e10 44667 | . . 3 ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐵 ∪ 𝐶) ) |
| 11 | 10 | in1 44544 | . 2 ⊢ (𝐴 = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶)) |
| 12 | 6, 11 | impbii 209 | 1 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-vd1 44543 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |