| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version | ||
| Description: Inference form of equncom 4108. equncomi 4109 was automatically derived from equncomiVD 45025 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
| Ref | Expression |
|---|---|
| equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
| 2 | equncom 4108 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 |
| This theorem is referenced by: disjssun 4417 difprsn1 4753 unidmrn 6234 djucomen 10080 ackbij1lem14 10134 ltxrlt 11194 ruclem6 16151 ruclem7 16152 i1f1 25638 vtxdgoddnumeven 29553 subfacp1lem1 35295 lindsenlbs 37728 poimirlem6 37739 poimirlem7 37740 poimirlem16 37749 poimirlem17 37750 pwfi2f1o 43253 cnvrcl0 43782 iunrelexp0 43859 dfrtrcl4 43895 cotrclrcl 43899 dffrege76 44096 sucidALTVD 45026 sucidALT 45027 usgrexmpl2edg 48191 |
| Copyright terms: Public domain | W3C validator |