| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version | ||
| Description: Inference form of equncom 4109. equncomi 4110 was automatically derived from equncomiVD 44907 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
| Ref | Expression |
|---|---|
| equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
| 2 | equncom 4109 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 |
| This theorem is referenced by: disjssun 4418 difprsn1 4752 unidmrn 6226 djucomen 10069 ackbij1lem14 10123 ltxrlt 11183 ruclem6 16144 ruclem7 16145 i1f1 25619 vtxdgoddnumeven 29533 subfacp1lem1 35221 lindsenlbs 37661 poimirlem6 37672 poimirlem7 37673 poimirlem16 37682 poimirlem17 37683 pwfi2f1o 43135 cnvrcl0 43664 iunrelexp0 43741 dfrtrcl4 43777 cotrclrcl 43781 dffrege76 43978 sucidALTVD 44908 sucidALT 44909 usgrexmpl2edg 48066 |
| Copyright terms: Public domain | W3C validator |