Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version |
Description: Inference form of equncom 4084. equncomi 4085 was automatically derived from equncomiVD 42378 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
Ref | Expression |
---|---|
equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | equncom 4084 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: disjssun 4398 difprsn1 4730 unidmrn 6171 phplem1 8892 djucomen 9864 ackbij1lem14 9920 ltxrlt 10976 ruclem6 15872 ruclem7 15873 i1f1 24759 vtxdgoddnumeven 27823 subfacp1lem1 33041 lindsenlbs 35699 poimirlem6 35710 poimirlem7 35711 poimirlem16 35720 poimirlem17 35721 pwfi2f1o 40837 cnvrcl0 41122 iunrelexp0 41199 dfrtrcl4 41235 cotrclrcl 41239 dffrege76 41436 sucidALTVD 42379 sucidALT 42380 |
Copyright terms: Public domain | W3C validator |