Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version |
Description: Inference form of equncom 4088. equncomi 4089 was automatically derived from equncomiVD 42489 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
Ref | Expression |
---|---|
equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | equncom 4088 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: disjssun 4401 difprsn1 4733 unidmrn 6182 phplem1OLD 9000 djucomen 9933 ackbij1lem14 9989 ltxrlt 11045 ruclem6 15944 ruclem7 15945 i1f1 24854 vtxdgoddnumeven 27920 subfacp1lem1 33141 lindsenlbs 35772 poimirlem6 35783 poimirlem7 35784 poimirlem16 35793 poimirlem17 35794 pwfi2f1o 40921 cnvrcl0 41233 iunrelexp0 41310 dfrtrcl4 41346 cotrclrcl 41350 dffrege76 41547 sucidALTVD 42490 sucidALT 42491 |
Copyright terms: Public domain | W3C validator |