![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version |
Description: Inference form of equncom 4182. equncomi 4183 was automatically derived from equncomiVD 44840 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
Ref | Expression |
---|---|
equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | equncom 4182 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: disjssun 4491 difprsn1 4825 unidmrn 6310 phplem1OLD 9280 djucomen 10247 ackbij1lem14 10301 ltxrlt 11360 ruclem6 16283 ruclem7 16284 i1f1 25744 vtxdgoddnumeven 29589 subfacp1lem1 35147 lindsenlbs 37575 poimirlem6 37586 poimirlem7 37587 poimirlem16 37596 poimirlem17 37597 pwfi2f1o 43053 cnvrcl0 43587 iunrelexp0 43664 dfrtrcl4 43700 cotrclrcl 43704 dffrege76 43901 sucidALTVD 44841 sucidALT 44842 usgrexmpl2edg 47844 |
Copyright terms: Public domain | W3C validator |