| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version | ||
| Description: Inference form of equncom 4122. equncomi 4123 was automatically derived from equncomiVD 44858 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
| Ref | Expression |
|---|---|
| equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
| 2 | equncom 4122 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 |
| This theorem is referenced by: disjssun 4431 difprsn1 4764 unidmrn 6252 djucomen 10131 ackbij1lem14 10185 ltxrlt 11244 ruclem6 16203 ruclem7 16204 i1f1 25591 vtxdgoddnumeven 29481 subfacp1lem1 35166 lindsenlbs 37609 poimirlem6 37620 poimirlem7 37621 poimirlem16 37630 poimirlem17 37631 pwfi2f1o 43085 cnvrcl0 43614 iunrelexp0 43691 dfrtrcl4 43727 cotrclrcl 43731 dffrege76 43928 sucidALTVD 44859 sucidALT 44860 usgrexmpl2edg 48020 |
| Copyright terms: Public domain | W3C validator |