MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equncomi Structured version   Visualization version   GIF version

Theorem equncomi 4085
Description: Inference form of equncom 4084. equncomi 4085 was automatically derived from equncomiVD 42378 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
Hypothesis
Ref Expression
equncomi.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
equncomi 𝐴 = (𝐶𝐵)

Proof of Theorem equncomi
StepHypRef Expression
1 equncomi.1 . 2 𝐴 = (𝐵𝐶)
2 equncom 4084 . 2 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
31, 2mpbi 229 1 𝐴 = (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888
This theorem is referenced by:  disjssun  4398  difprsn1  4730  unidmrn  6171  phplem1  8892  djucomen  9864  ackbij1lem14  9920  ltxrlt  10976  ruclem6  15872  ruclem7  15873  i1f1  24759  vtxdgoddnumeven  27823  subfacp1lem1  33041  lindsenlbs  35699  poimirlem6  35710  poimirlem7  35711  poimirlem16  35720  poimirlem17  35721  pwfi2f1o  40837  cnvrcl0  41122  iunrelexp0  41199  dfrtrcl4  41235  cotrclrcl  41239  dffrege76  41436  sucidALTVD  42379  sucidALT  42380
  Copyright terms: Public domain W3C validator