| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version | ||
| Description: Inference form of equncom 4139. equncomi 4140 was automatically derived from equncomiVD 44868 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
| Ref | Expression |
|---|---|
| equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
| 2 | equncom 4139 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 |
| This theorem is referenced by: disjssun 4448 difprsn1 4781 unidmrn 6273 phplem1OLD 9233 djucomen 10197 ackbij1lem14 10251 ltxrlt 11310 ruclem6 16258 ruclem7 16259 i1f1 25648 vtxdgoddnumeven 29538 subfacp1lem1 35206 lindsenlbs 37644 poimirlem6 37655 poimirlem7 37656 poimirlem16 37665 poimirlem17 37666 pwfi2f1o 43095 cnvrcl0 43624 iunrelexp0 43701 dfrtrcl4 43737 cotrclrcl 43741 dffrege76 43938 sucidALTVD 44869 sucidALT 44870 usgrexmpl2edg 48013 |
| Copyright terms: Public domain | W3C validator |