![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version |
Description: Inference form of equncom 4170. equncomi 4171 was automatically derived from equncomiVD 44880 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
Ref | Expression |
---|---|
equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | equncom 4170 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∪ cun 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3969 |
This theorem is referenced by: disjssun 4475 difprsn1 4806 unidmrn 6304 phplem1OLD 9258 djucomen 10222 ackbij1lem14 10276 ltxrlt 11335 ruclem6 16274 ruclem7 16275 i1f1 25747 vtxdgoddnumeven 29594 subfacp1lem1 35176 lindsenlbs 37614 poimirlem6 37625 poimirlem7 37626 poimirlem16 37635 poimirlem17 37636 pwfi2f1o 43099 cnvrcl0 43629 iunrelexp0 43706 dfrtrcl4 43742 cotrclrcl 43746 dffrege76 43943 sucidALTVD 44881 sucidALT 44882 usgrexmpl2edg 47937 |
Copyright terms: Public domain | W3C validator |