MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equncomi Structured version   Visualization version   GIF version

Theorem equncomi 4109
Description: Inference form of equncom 4108. equncomi 4109 was automatically derived from equncomiVD 45025 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
Hypothesis
Ref Expression
equncomi.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
equncomi 𝐴 = (𝐶𝐵)

Proof of Theorem equncomi
StepHypRef Expression
1 equncomi.1 . 2 𝐴 = (𝐵𝐶)
2 equncom 4108 . 2 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
31, 2mpbi 230 1 𝐴 = (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903
This theorem is referenced by:  disjssun  4417  difprsn1  4753  unidmrn  6234  djucomen  10080  ackbij1lem14  10134  ltxrlt  11194  ruclem6  16151  ruclem7  16152  i1f1  25638  vtxdgoddnumeven  29553  subfacp1lem1  35295  lindsenlbs  37728  poimirlem6  37739  poimirlem7  37740  poimirlem16  37749  poimirlem17  37750  pwfi2f1o  43253  cnvrcl0  43782  iunrelexp0  43859  dfrtrcl4  43895  cotrclrcl  43899  dffrege76  44096  sucidALTVD  45026  sucidALT  45027  usgrexmpl2edg  48191
  Copyright terms: Public domain W3C validator