| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version | ||
| Description: Inference form of equncom 4141. equncomi 4142 was automatically derived from equncomiVD 44834 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
| Ref | Expression |
|---|---|
| equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
| 2 | equncom 4141 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 |
| This theorem is referenced by: disjssun 4450 difprsn1 4782 unidmrn 6281 phplem1OLD 9237 djucomen 10201 ackbij1lem14 10255 ltxrlt 11314 ruclem6 16254 ruclem7 16255 i1f1 25680 vtxdgoddnumeven 29518 subfacp1lem1 35125 lindsenlbs 37563 poimirlem6 37574 poimirlem7 37575 poimirlem16 37584 poimirlem17 37585 pwfi2f1o 43053 cnvrcl0 43583 iunrelexp0 43660 dfrtrcl4 43696 cotrclrcl 43700 dffrege76 43897 sucidALTVD 44835 sucidALT 44836 usgrexmpl2edg 47934 |
| Copyright terms: Public domain | W3C validator |