| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version | ||
| Description: Inference form of equncom 4118. equncomi 4119 was automatically derived from equncomiVD 44831 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
| Ref | Expression |
|---|---|
| equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
| 2 | equncom 4118 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: disjssun 4427 difprsn1 4760 unidmrn 6240 djucomen 10107 ackbij1lem14 10161 ltxrlt 11220 ruclem6 16179 ruclem7 16180 i1f1 25567 vtxdgoddnumeven 29457 subfacp1lem1 35139 lindsenlbs 37582 poimirlem6 37593 poimirlem7 37594 poimirlem16 37603 poimirlem17 37604 pwfi2f1o 43058 cnvrcl0 43587 iunrelexp0 43664 dfrtrcl4 43700 cotrclrcl 43704 dffrege76 43901 sucidALTVD 44832 sucidALT 44833 usgrexmpl2edg 47993 |
| Copyright terms: Public domain | W3C validator |