| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version | ||
| Description: Inference form of equncom 4112. equncomi 4113 was automatically derived from equncomiVD 44845 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| Ref | Expression |
|---|---|
| equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
| Ref | Expression |
|---|---|
| equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
| 2 | equncom 4112 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 |
| This theorem is referenced by: disjssun 4421 difprsn1 4754 unidmrn 6231 djucomen 10091 ackbij1lem14 10145 ltxrlt 11204 ruclem6 16162 ruclem7 16163 i1f1 25607 vtxdgoddnumeven 29517 subfacp1lem1 35154 lindsenlbs 37597 poimirlem6 37608 poimirlem7 37609 poimirlem16 37618 poimirlem17 37619 pwfi2f1o 43072 cnvrcl0 43601 iunrelexp0 43678 dfrtrcl4 43714 cotrclrcl 43718 dffrege76 43915 sucidALTVD 44846 sucidALT 44847 usgrexmpl2edg 48017 |
| Copyright terms: Public domain | W3C validator |