![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version |
Description: Inference form of equncom 4014. equncomi 4015 was automatically derived from equncomiVD 40656 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
Ref | Expression |
---|---|
equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | equncom 4014 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | mpbi 222 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∪ cun 3822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-v 3412 df-un 3829 |
This theorem is referenced by: disjssun 4295 difprsn1 4604 unidmrn 5966 phplem1 8491 djucomen 9400 ackbij1lem14 9452 ltxrlt 10510 ruclem6 15447 ruclem7 15448 i1f1 24010 vtxdgoddnumeven 27054 subfacp1lem1 32044 lindsenlbs 34361 poimirlem6 34372 poimirlem7 34373 poimirlem16 34382 poimirlem17 34383 pwfi2f1o 39126 cnvrcl0 39382 iunrelexp0 39444 dfrtrcl4 39480 cotrclrcl 39484 dffrege76 39682 sucidALTVD 40657 sucidALT 40658 |
Copyright terms: Public domain | W3C validator |