MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb2 Structured version   Visualization version   GIF version

Theorem equsb2 2497
Description: Substitution applied to an atomic wff. Usage of this theorem is discouraged because it depends on ax-13 2373. Check out equsb1v 2106 for a version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
equsb2 [𝑦 / 𝑥]𝑦 = 𝑥

Proof of Theorem equsb2
StepHypRef Expression
1 sb2 2481 . 2 (∀𝑥(𝑥 = 𝑦𝑦 = 𝑥) → [𝑦 / 𝑥]𝑦 = 𝑥)
2 equcomi 2023 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2mpg 1803 1 [𝑦 / 𝑥]𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-12 2174  ax-13 2373
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790  df-sb 2071
This theorem is referenced by:  bj-sbidmOLD  35013
  Copyright terms: Public domain W3C validator