MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb2 Structured version   Visualization version   GIF version

Theorem equsb2 2492
Description: Substitution applied to an atomic wff. Usage of this theorem is discouraged because it depends on ax-13 2372. Check out equsb1v 2108 for a version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
equsb2 [𝑦 / 𝑥]𝑦 = 𝑥

Proof of Theorem equsb2
StepHypRef Expression
1 sb2 2479 . 2 (∀𝑥(𝑥 = 𝑦𝑦 = 𝑥) → [𝑦 / 𝑥]𝑦 = 𝑥)
2 equcomi 2018 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2mpg 1798 1 [𝑦 / 𝑥]𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  bj-sbidmOLD  36890
  Copyright terms: Public domain W3C validator