![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsnlem | Structured version Visualization version GIF version |
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 47990 assuming ax-rep 5289, or eufsn2 47991 assuming ax-pow 5369 and ax-un 7748. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
eufsnlem.2 | ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) |
Ref | Expression |
---|---|
eufsnlem | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufsnlem.2 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) | |
2 | eufsn.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fconst2g 7221 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
5 | 4 | alrimiv 1922 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
6 | eqeq2 2740 | . . . . 5 ⊢ (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔 ↔ 𝑓 = (𝐴 × {𝐵}))) | |
7 | 6 | bibi2d 341 | . . . 4 ⊢ (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
8 | 7 | albidv 1915 | . . 3 ⊢ (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
9 | 1, 5, 8 | spcedv 3587 | . 2 ⊢ (𝜑 → ∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔)) |
10 | eu6im 2564 | . 2 ⊢ (∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | |
11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃!weu 2557 {csn 4632 × cxp 5680 ⟶wf 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 |
This theorem is referenced by: eufsn 47990 eufsn2 47991 |
Copyright terms: Public domain | W3C validator |