Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eufsnlem Structured version   Visualization version   GIF version

Theorem eufsnlem 48799
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 48800 assuming ax-rep 5254, or eufsn2 48801 assuming ax-pow 5340 and ax-un 7734. (Contributed by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
eufsn.1 (𝜑𝐵𝑊)
eufsnlem.2 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
Assertion
Ref Expression
eufsnlem (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem eufsnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eufsnlem.2 . . 3 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
2 eufsn.1 . . . . 5 (𝜑𝐵𝑊)
3 fconst2g 7200 . . . . 5 (𝐵𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
42, 3syl 17 . . . 4 (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
54alrimiv 1927 . . 3 (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
6 eqeq2 2748 . . . . 5 (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔𝑓 = (𝐴 × {𝐵})))
76bibi2d 342 . . . 4 (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
87albidv 1920 . . 3 (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
91, 5, 8spcedv 3582 . 2 (𝜑 → ∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔))
10 eu6im 2575 . 2 (∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵})
119, 10syl 17 1 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2568  {csn 4606   × cxp 5657  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  eufsn  48800  eufsn2  48801
  Copyright terms: Public domain W3C validator