Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eufsnlem Structured version   Visualization version   GIF version

Theorem eufsnlem 47460
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 47461 assuming ax-rep 5284, or eufsn2 47462 assuming ax-pow 5362 and ax-un 7721. (Contributed by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
eufsn.1 (𝜑𝐵𝑊)
eufsnlem.2 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
Assertion
Ref Expression
eufsnlem (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem eufsnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eufsnlem.2 . . 3 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
2 eufsn.1 . . . . 5 (𝜑𝐵𝑊)
3 fconst2g 7200 . . . . 5 (𝐵𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
42, 3syl 17 . . . 4 (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
54alrimiv 1930 . . 3 (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
6 eqeq2 2744 . . . . 5 (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔𝑓 = (𝐴 × {𝐵})))
76bibi2d 342 . . . 4 (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
87albidv 1923 . . 3 (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
91, 5, 8spcedv 3588 . 2 (𝜑 → ∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔))
10 eu6im 2569 . 2 (∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵})
119, 10syl 17 1 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2562  {csn 4627   × cxp 5673  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548
This theorem is referenced by:  eufsn  47461  eufsn2  47462
  Copyright terms: Public domain W3C validator