Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eufsnlem Structured version   Visualization version   GIF version

Theorem eufsnlem 49002
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 49003 assuming ax-rep 5221, or eufsn2 49004 assuming ax-pow 5307 and ax-un 7677. (Contributed by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
eufsn.1 (𝜑𝐵𝑊)
eufsnlem.2 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
Assertion
Ref Expression
eufsnlem (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem eufsnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eufsnlem.2 . . 3 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
2 eufsn.1 . . . . 5 (𝜑𝐵𝑊)
3 fconst2g 7146 . . . . 5 (𝐵𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
42, 3syl 17 . . . 4 (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
54alrimiv 1928 . . 3 (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
6 eqeq2 2745 . . . . 5 (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔𝑓 = (𝐴 × {𝐵})))
76bibi2d 342 . . . 4 (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
87albidv 1921 . . 3 (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
91, 5, 8spcedv 3549 . 2 (𝜑 → ∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔))
10 eu6im 2572 . 2 (∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵})
119, 10syl 17 1 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2113  ∃!weu 2565  {csn 4577   × cxp 5619  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by:  eufsn  49003  eufsn2  49004
  Copyright terms: Public domain W3C validator