Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsnlem | Structured version Visualization version GIF version |
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 45746 assuming ax-rep 5164, or eufsn2 45747 assuming ax-pow 5242 and ax-un 7491. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
eufsnlem.2 | ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) |
Ref | Expression |
---|---|
eufsnlem | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufsnlem.2 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) | |
2 | eufsn.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fconst2g 6987 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
5 | 4 | alrimiv 1934 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
6 | eqeq2 2751 | . . . . 5 ⊢ (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔 ↔ 𝑓 = (𝐴 × {𝐵}))) | |
7 | 6 | bibi2d 346 | . . . 4 ⊢ (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
8 | 7 | albidv 1927 | . . 3 ⊢ (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
9 | 1, 5, 8 | spcedv 3505 | . 2 ⊢ (𝜑 → ∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔)) |
10 | eu6im 2577 | . 2 ⊢ (∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | |
11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 = wceq 1542 ∃wex 1786 ∈ wcel 2114 ∃!weu 2570 {csn 4526 × cxp 5533 ⟶wf 6345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-fv 6357 |
This theorem is referenced by: eufsn 45746 eufsn2 45747 |
Copyright terms: Public domain | W3C validator |