Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eufsnlem Structured version   Visualization version   GIF version

Theorem eufsnlem 48554
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 48555 assuming ax-rep 5303, or eufsn2 48556 assuming ax-pow 5383 and ax-un 7770. (Contributed by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
eufsn.1 (𝜑𝐵𝑊)
eufsnlem.2 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
Assertion
Ref Expression
eufsnlem (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem eufsnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eufsnlem.2 . . 3 (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)
2 eufsn.1 . . . . 5 (𝜑𝐵𝑊)
3 fconst2g 7240 . . . . 5 (𝐵𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
42, 3syl 17 . . . 4 (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
54alrimiv 1926 . . 3 (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
6 eqeq2 2752 . . . . 5 (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔𝑓 = (𝐴 × {𝐵})))
76bibi2d 342 . . . 4 (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
87albidv 1919 . . 3 (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))))
91, 5, 8spcedv 3611 . 2 (𝜑 → ∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔))
10 eu6im 2578 . 2 (∃𝑔𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵})
119, 10syl 17 1 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  {csn 4648   × cxp 5698  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  eufsn  48555  eufsn2  48556
  Copyright terms: Public domain W3C validator