Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsnlem | Structured version Visualization version GIF version |
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 46169 assuming ax-rep 5209, or eufsn2 46170 assuming ax-pow 5288 and ax-un 7588. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
eufsnlem.2 | ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) |
Ref | Expression |
---|---|
eufsnlem | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufsnlem.2 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) | |
2 | eufsn.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fconst2g 7078 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
5 | 4 | alrimiv 1930 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
6 | eqeq2 2750 | . . . . 5 ⊢ (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔 ↔ 𝑓 = (𝐴 × {𝐵}))) | |
7 | 6 | bibi2d 343 | . . . 4 ⊢ (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
8 | 7 | albidv 1923 | . . 3 ⊢ (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
9 | 1, 5, 8 | spcedv 3537 | . 2 ⊢ (𝜑 → ∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔)) |
10 | eu6im 2575 | . 2 ⊢ (∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | |
11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 {csn 4561 × cxp 5587 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: eufsn 46169 eufsn2 46170 |
Copyright terms: Public domain | W3C validator |