| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsnlem | Structured version Visualization version GIF version | ||
| Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 48800 assuming ax-rep 5254, or eufsn2 48801 assuming ax-pow 5340 and ax-un 7734. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| eufsnlem.2 | ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) |
| Ref | Expression |
|---|---|
| eufsnlem | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsnlem.2 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) | |
| 2 | eufsn.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | fconst2g 7200 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
| 5 | 4 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
| 6 | eqeq2 2748 | . . . . 5 ⊢ (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔 ↔ 𝑓 = (𝐴 × {𝐵}))) | |
| 7 | 6 | bibi2d 342 | . . . 4 ⊢ (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
| 8 | 7 | albidv 1920 | . . 3 ⊢ (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
| 9 | 1, 5, 8 | spcedv 3582 | . 2 ⊢ (𝜑 → ∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔)) |
| 10 | eu6im 2575 | . 2 ⊢ (∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | |
| 11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 {csn 4606 × cxp 5657 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: eufsn 48800 eufsn2 48801 |
| Copyright terms: Public domain | W3C validator |