| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsnlem | Structured version Visualization version GIF version | ||
| Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 48830 assuming ax-rep 5234, or eufsn2 48831 assuming ax-pow 5320 and ax-un 7711. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| eufsnlem.2 | ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) |
| Ref | Expression |
|---|---|
| eufsnlem | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsnlem.2 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) | |
| 2 | eufsn.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | fconst2g 7177 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
| 5 | 4 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) |
| 6 | eqeq2 2741 | . . . . 5 ⊢ (𝑔 = (𝐴 × {𝐵}) → (𝑓 = 𝑔 ↔ 𝑓 = (𝐴 × {𝐵}))) | |
| 7 | 6 | bibi2d 342 | . . . 4 ⊢ (𝑔 = (𝐴 × {𝐵}) → ((𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
| 8 | 7 | albidv 1920 | . . 3 ⊢ (𝑔 = (𝐴 × {𝐵}) → (∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))) |
| 9 | 1, 5, 8 | spcedv 3564 | . 2 ⊢ (𝜑 → ∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔)) |
| 10 | eu6im 2568 | . 2 ⊢ (∃𝑔∀𝑓(𝑓:𝐴⟶{𝐵} ↔ 𝑓 = 𝑔) → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | |
| 11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 {csn 4589 × cxp 5636 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: eufsn 48830 eufsn2 48831 |
| Copyright terms: Public domain | W3C validator |