MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euf Structured version   Visualization version   GIF version

Theorem euf 2576
Description: Version of eu6 2574 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2018.) Avoid ax-13 2372. (Revised by Wolf Lammen, 16-Oct-2022.)
Hypothesis
Ref Expression
euf.1 𝑦𝜑
Assertion
Ref Expression
euf (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem euf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6 2574 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 euf.1 . . . . 5 𝑦𝜑
3 nfv 1918 . . . . 5 𝑦 𝑥 = 𝑧
42, 3nfbi 1907 . . . 4 𝑦(𝜑𝑥 = 𝑧)
54nfal 2321 . . 3 𝑦𝑥(𝜑𝑥 = 𝑧)
6 nfv 1918 . . 3 𝑧𝑥(𝜑𝑥 = 𝑦)
7 equequ2 2030 . . . . 5 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
87bibi2d 342 . . . 4 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑧) ↔ (𝜑𝑥 = 𝑦)))
98albidv 1924 . . 3 (𝑧 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑥(𝜑𝑥 = 𝑦)))
105, 6, 9cbvexv1 2341 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
111, 10bitri 274 1 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  wex 1783  wnf 1787  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569
This theorem is referenced by:  eu1  2612
  Copyright terms: Public domain W3C validator