|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > euorv | Structured version Visualization version GIF version | ||
| Description: Introduce a disjunct into a unique existential quantifier. Version of euor 2611 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| euorv | ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biorf 937 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 2 | 1 | eubidv 2586 | . 2 ⊢ (¬ 𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑 ∨ 𝜓))) | 
| 3 | 2 | biimpa 476 | 1 ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-mo 2540 df-eu 2569 | 
| This theorem is referenced by: eueq2 3716 | 
| Copyright terms: Public domain | W3C validator |