MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euor2 Structured version   Visualization version   GIF version

Theorem euor2 2616
Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 27-Dec-2018.)
Assertion
Ref Expression
euor2 (¬ ∃𝑥𝜑 → (∃!𝑥(𝜑𝜓) ↔ ∃!𝑥𝜓))

Proof of Theorem euor2
StepHypRef Expression
1 nfe1 2151 . . 3 𝑥𝑥𝜑
21nfn 1856 . 2 𝑥 ¬ ∃𝑥𝜑
3 19.8a 2182 . . 3 (𝜑 → ∃𝑥𝜑)
4 biorf 935 . . . 4 𝜑 → (𝜓 ↔ (𝜑𝜓)))
54bicomd 223 . . 3 𝜑 → ((𝜑𝜓) ↔ 𝜓))
63, 5nsyl5 159 . 2 (¬ ∃𝑥𝜑 → ((𝜑𝜓) ↔ 𝜓))
72, 6eubid 2590 1 (¬ ∃𝑥𝜑 → (∃!𝑥(𝜑𝜓) ↔ ∃!𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846  wex 1777  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572
This theorem is referenced by:  reuun2  4344
  Copyright terms: Public domain W3C validator