MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euor Structured version   Visualization version   GIF version

Theorem euor 2605
Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv 2606. (Contributed by NM, 21-Oct-2005.)
Hypothesis
Ref Expression
euor.nf 𝑥𝜑
Assertion
Ref Expression
euor ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))

Proof of Theorem euor
StepHypRef Expression
1 euor.nf . . . 4 𝑥𝜑
21nfn 1858 . . 3 𝑥 ¬ 𝜑
3 biorf 933 . . 3 𝜑 → (𝜓 ↔ (𝜑𝜓)))
42, 3eubid 2579 . 2 𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑𝜓)))
54biimpa 475 1 ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 843  wnf 1783  ∃!weu 2560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ex 1780  df-nf 1784  df-mo 2532  df-eu 2561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator