Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euor | Structured version Visualization version GIF version |
Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv 2614. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
euor.nf | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
euor | ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euor.nf | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfn 1861 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
3 | biorf 933 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
4 | 2, 3 | eubid 2587 | . 2 ⊢ (¬ 𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑 ∨ 𝜓))) |
5 | 4 | biimpa 476 | 1 ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 Ⅎwnf 1787 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |