MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euor Structured version   Visualization version   GIF version

Theorem euor 2615
Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv 2616. (Contributed by NM, 21-Oct-2005.)
Hypothesis
Ref Expression
euor.nf 𝑥𝜑
Assertion
Ref Expression
euor ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))

Proof of Theorem euor
StepHypRef Expression
1 euor.nf . . . 4 𝑥𝜑
21nfn 1864 . . 3 𝑥 ¬ 𝜑
3 biorf 934 . . 3 𝜑 → (𝜓 ↔ (𝜑𝜓)))
42, 3eubid 2589 . 2 𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑𝜓)))
54biimpa 477 1 ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wnf 1790  ∃!weu 2570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-12 2175
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1787  df-nf 1791  df-mo 2542  df-eu 2571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator