Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euor | Structured version Visualization version GIF version |
Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv 2614. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
euor.nf | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
euor | ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euor.nf | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfn 1860 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
3 | biorf 934 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
4 | 2, 3 | eubid 2587 | . 2 ⊢ (¬ 𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑 ∨ 𝜓))) |
5 | 4 | biimpa 477 | 1 ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 Ⅎwnf 1786 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |