| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euor | Structured version Visualization version GIF version | ||
| Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv 2610. (Contributed by NM, 21-Oct-2005.) |
| Ref | Expression |
|---|---|
| euor.nf | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| euor | ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euor.nf | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfn 1856 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 3 | biorf 936 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 4 | 2, 3 | eubid 2585 | . 2 ⊢ (¬ 𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑 ∨ 𝜓))) |
| 5 | 4 | biimpa 476 | 1 ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 Ⅎwnf 1782 ∃!weu 2566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-mo 2538 df-eu 2567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |