| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2euswapv | Structured version Visualization version GIF version | ||
| Description: A condition allowing to swap an existential quantifier and a unique existential quantifier. Version of 2euswap 2639 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 10-Apr-2004.) (Revised by GG, 22-Aug-2023.) |
| Ref | Expression |
|---|---|
| 2euswapv | ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomim 2165 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑)) |
| 3 | 2moswapv 2623 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑)) | |
| 4 | 2, 3 | anim12d 609 | . 2 ⊢ (∀𝑥∃*𝑦𝜑 → ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑))) |
| 5 | df-eu 2563 | . 2 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
| 6 | df-eu 2563 | . 2 ⊢ (∃!𝑦∃𝑥𝜑 ↔ (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑)) | |
| 7 | 4, 5, 6 | 3imtr4g 296 | 1 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∃*wmo 2532 ∃!weu 2562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2143 ax-11 2159 ax-12 2179 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2534 df-eu 2563 |
| This theorem is referenced by: 2eu1v 2646 euxfr2w 3677 2reuswap 3703 2reuswap2 3704 reuxfrdf 32460 |
| Copyright terms: Public domain | W3C validator |