MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2euswapv Structured version   Visualization version   GIF version

Theorem 2euswapv 2632
Description: A condition allowing to swap an existential quantifier and a unique existential quantifier. Version of 2euswap 2647 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Apr-2004.) (Revised by Gino Giotto, 22-Aug-2023.)
Assertion
Ref Expression
2euswapv (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2euswapv
StepHypRef Expression
1 excomim 2165 . . . 4 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
21a1i 11 . . 3 (∀𝑥∃*𝑦𝜑 → (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑))
3 2moswapv 2631 . . 3 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
42, 3anim12d 608 . 2 (∀𝑥∃*𝑦𝜑 → ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑)))
5 df-eu 2569 . 2 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
6 df-eu 2569 . 2 (∃!𝑦𝑥𝜑 ↔ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑))
74, 5, 63imtr4g 295 1 (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569
This theorem is referenced by:  2eu1v  2653  euxfr2w  3650  2reuswap  3676  2reuswap2  3677  reuxfrdf  30740
  Copyright terms: Public domain W3C validator