Proof of Theorem umgr2cycl
| Step | Hyp | Ref
| Expression |
| 1 | | ax-5 1910 |
. . . . . . 7
⊢ (𝑗 ∈ dom 𝐼 → ∀𝑘 𝑗 ∈ dom 𝐼) |
| 2 | | alral 3075 |
. . . . . . 7
⊢
(∀𝑘 𝑗 ∈ dom 𝐼 → ∀𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝑗 ∈ dom 𝐼 → ∀𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼) |
| 4 | | r19.29 3114 |
. . . . . 6
⊢
((∀𝑘 ∈
dom 𝐼 𝑗 ∈ dom 𝐼 ∧ ∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑘 ∈ dom 𝐼(𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘))) |
| 5 | 3, 4 | sylan 580 |
. . . . 5
⊢ ((𝑗 ∈ dom 𝐼 ∧ ∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑘 ∈ dom 𝐼(𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘))) |
| 6 | | eqid 2737 |
. . . . . . . . 9
⊢
〈“𝑗𝑘”〉 =
〈“𝑗𝑘”〉 |
| 7 | | umgr2cycl.1 |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
| 8 | | simp1 1137 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → 𝐺 ∈ UMGraph) |
| 9 | | simp2 1138 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → 𝑗 ∈ dom 𝐼) |
| 10 | | simp3r 1203 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → 𝑗 ≠ 𝑘) |
| 11 | | simp3l 1202 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → (𝐼‘𝑗) = (𝐼‘𝑘)) |
| 12 | 6, 7, 8, 9, 10, 11 | umgr2cycllem 35145 |
. . . . . . . 8
⊢ ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑝〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝) |
| 13 | | s2len 14928 |
. . . . . . . . 9
⊢
(♯‘〈“𝑗𝑘”〉) = 2 |
| 14 | 13 | ax-gen 1795 |
. . . . . . . 8
⊢
∀𝑝(♯‘〈“𝑗𝑘”〉) = 2 |
| 15 | | 19.29r 1874 |
. . . . . . . . 9
⊢
((∃𝑝〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ ∀𝑝(♯‘〈“𝑗𝑘”〉) = 2) → ∃𝑝(〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ (♯‘〈“𝑗𝑘”〉) = 2)) |
| 16 | | s2cli 14919 |
. . . . . . . . . . . 12
⊢
〈“𝑗𝑘”〉 ∈ Word
V |
| 17 | | breq1 5146 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 〈“𝑗𝑘”〉 → (𝑓(Cycles‘𝐺)𝑝 ↔ 〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝)) |
| 18 | | fveqeq2 6915 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 〈“𝑗𝑘”〉 → ((♯‘𝑓) = 2 ↔
(♯‘〈“𝑗𝑘”〉) = 2)) |
| 19 | 17, 18 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 〈“𝑗𝑘”〉 → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) ↔ (〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ (♯‘〈“𝑗𝑘”〉) = 2))) |
| 20 | 19 | rspcev 3622 |
. . . . . . . . . . . 12
⊢
((〈“𝑗𝑘”〉 ∈ Word V ∧
(〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ (♯‘〈“𝑗𝑘”〉) = 2)) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 21 | 16, 20 | mpan 690 |
. . . . . . . . . . 11
⊢
((〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ (♯‘〈“𝑗𝑘”〉) = 2) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 22 | | rexex 3076 |
. . . . . . . . . . 11
⊢
(∃𝑓 ∈
Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢
((〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ (♯‘〈“𝑗𝑘”〉) = 2) → ∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 24 | 23 | eximi 1835 |
. . . . . . . . 9
⊢
(∃𝑝(〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ (♯‘〈“𝑗𝑘”〉) = 2) → ∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 25 | | excomim 2163 |
. . . . . . . . 9
⊢
(∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 26 | 15, 24, 25 | 3syl 18 |
. . . . . . . 8
⊢
((∃𝑝〈“𝑗𝑘”〉(Cycles‘𝐺)𝑝 ∧ ∀𝑝(♯‘〈“𝑗𝑘”〉) = 2) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 27 | 12, 14, 26 | sylancl 586 |
. . . . . . 7
⊢ ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
| 28 | 27 | 3expib 1123 |
. . . . . 6
⊢ (𝐺 ∈ UMGraph → ((𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))) |
| 29 | 28 | rexlimdvw 3160 |
. . . . 5
⊢ (𝐺 ∈ UMGraph →
(∃𝑘 ∈ dom 𝐼(𝑗 ∈ dom 𝐼 ∧ ((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))) |
| 30 | 5, 29 | syl5 34 |
. . . 4
⊢ (𝐺 ∈ UMGraph → ((𝑗 ∈ dom 𝐼 ∧ ∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))) |
| 31 | 30 | expd 415 |
. . 3
⊢ (𝐺 ∈ UMGraph → (𝑗 ∈ dom 𝐼 → (∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)))) |
| 32 | 31 | rexlimdv 3153 |
. 2
⊢ (𝐺 ∈ UMGraph →
(∃𝑗 ∈ dom 𝐼∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))) |
| 33 | 32 | imp 406 |
1
⊢ ((𝐺 ∈ UMGraph ∧
∃𝑗 ∈ dom 𝐼∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |