Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2cycl Structured version   Visualization version   GIF version

Theorem umgr2cycl 34674
Description: A multigraph with two distinct edges that connect the same vertices has a 2-cycle. (Contributed by BTernaryTau, 17-Oct-2023.)
Hypothesis
Ref Expression
umgr2cycl.1 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
umgr2cycl ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom 𝐼𝑘 ∈ dom 𝐼((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
Distinct variable groups:   𝑘,𝐼   𝑓,𝑗,𝑘,𝐺,𝑝
Allowed substitution hints:   𝐼(𝑓,𝑗,𝑝)

Proof of Theorem umgr2cycl
StepHypRef Expression
1 ax-5 1906 . . . . . . 7 (𝑗 ∈ dom 𝐼 → ∀𝑘 𝑗 ∈ dom 𝐼)
2 alral 3070 . . . . . . 7 (∀𝑘 𝑗 ∈ dom 𝐼 → ∀𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼)
31, 2syl 17 . . . . . 6 (𝑗 ∈ dom 𝐼 → ∀𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼)
4 r19.29 3109 . . . . . 6 ((∀𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼 ∧ ∃𝑘 ∈ dom 𝐼((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑘 ∈ dom 𝐼(𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)))
53, 4sylan 579 . . . . 5 ((𝑗 ∈ dom 𝐼 ∧ ∃𝑘 ∈ dom 𝐼((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑘 ∈ dom 𝐼(𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)))
6 eqid 2727 . . . . . . . . 9 ⟨“𝑗𝑘”⟩ = ⟨“𝑗𝑘”⟩
7 umgr2cycl.1 . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
8 simp1 1134 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → 𝐺 ∈ UMGraph)
9 simp2 1135 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → 𝑗 ∈ dom 𝐼)
10 simp3r 1200 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → 𝑗𝑘)
11 simp3l 1199 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → (𝐼𝑗) = (𝐼𝑘))
126, 7, 8, 9, 10, 11umgr2cycllem 34673 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑝⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝)
13 s2len 14858 . . . . . . . . 9 (♯‘⟨“𝑗𝑘”⟩) = 2
1413ax-gen 1790 . . . . . . . 8 𝑝(♯‘⟨“𝑗𝑘”⟩) = 2
15 19.29r 1870 . . . . . . . . 9 ((∃𝑝⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ ∀𝑝(♯‘⟨“𝑗𝑘”⟩) = 2) → ∃𝑝(⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ (♯‘⟨“𝑗𝑘”⟩) = 2))
16 s2cli 14849 . . . . . . . . . . . 12 ⟨“𝑗𝑘”⟩ ∈ Word V
17 breq1 5145 . . . . . . . . . . . . . 14 (𝑓 = ⟨“𝑗𝑘”⟩ → (𝑓(Cycles‘𝐺)𝑝 ↔ ⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝))
18 fveqeq2 6900 . . . . . . . . . . . . . 14 (𝑓 = ⟨“𝑗𝑘”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑗𝑘”⟩) = 2))
1917, 18anbi12d 630 . . . . . . . . . . . . 13 (𝑓 = ⟨“𝑗𝑘”⟩ → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) ↔ (⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ (♯‘⟨“𝑗𝑘”⟩) = 2)))
2019rspcev 3607 . . . . . . . . . . . 12 ((⟨“𝑗𝑘”⟩ ∈ Word V ∧ (⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ (♯‘⟨“𝑗𝑘”⟩) = 2)) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
2116, 20mpan 689 . . . . . . . . . . 11 ((⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ (♯‘⟨“𝑗𝑘”⟩) = 2) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
22 rexex 3071 . . . . . . . . . . 11 (∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
2321, 22syl 17 . . . . . . . . . 10 ((⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ (♯‘⟨“𝑗𝑘”⟩) = 2) → ∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
2423eximi 1830 . . . . . . . . 9 (∃𝑝(⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ (♯‘⟨“𝑗𝑘”⟩) = 2) → ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
25 excomim 2156 . . . . . . . . 9 (∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
2615, 24, 253syl 18 . . . . . . . 8 ((∃𝑝⟨“𝑗𝑘”⟩(Cycles‘𝐺)𝑝 ∧ ∀𝑝(♯‘⟨“𝑗𝑘”⟩) = 2) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
2712, 14, 26sylancl 585 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
28273expib 1120 . . . . . 6 (𝐺 ∈ UMGraph → ((𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)))
2928rexlimdvw 3155 . . . . 5 (𝐺 ∈ UMGraph → (∃𝑘 ∈ dom 𝐼(𝑗 ∈ dom 𝐼 ∧ ((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)))
305, 29syl5 34 . . . 4 (𝐺 ∈ UMGraph → ((𝑗 ∈ dom 𝐼 ∧ ∃𝑘 ∈ dom 𝐼((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)))
3130expd 415 . . 3 (𝐺 ∈ UMGraph → (𝑗 ∈ dom 𝐼 → (∃𝑘 ∈ dom 𝐼((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))))
3231rexlimdv 3148 . 2 (𝐺 ∈ UMGraph → (∃𝑗 ∈ dom 𝐼𝑘 ∈ dom 𝐼((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)))
3332imp 406 1 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom 𝐼𝑘 ∈ dom 𝐼((𝐼𝑗) = (𝐼𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1532   = wceq 1534  wex 1774  wcel 2099  wne 2935  wral 3056  wrex 3065  Vcvv 3469   class class class wbr 5142  dom cdm 5672  cfv 6542  2c2 12283  chash 14307  Word cword 14482  ⟨“cs2 14810  iEdgciedg 28784  UMGraphcumgr 28868  Cyclesccycls 29573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9910  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503  df-fzo 13646  df-hash 14308  df-word 14483  df-concat 14539  df-s1 14564  df-s2 14817  df-s3 14818  df-edg 28835  df-uhgr 28845  df-upgr 28869  df-umgr 28870  df-wlks 29387  df-trls 29480  df-pths 29504  df-cycls 29575
This theorem is referenced by:  umgracycusgr  34687
  Copyright terms: Public domain W3C validator