Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr3 Structured version   Visualization version   GIF version

Theorem lfuhgr3 35107
Description: A hypergraph is loop-free if and only if none of its edges connect to only one vertex. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr3.1 𝑉 = (Vtx‘𝐺)
lfuhgr3.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr3 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐺,𝑎
Allowed substitution hints:   𝐼(𝑥,𝑎)   𝑉(𝑎)

Proof of Theorem lfuhgr3
StepHypRef Expression
1 lfuhgr3.1 . . 3 𝑉 = (Vtx‘𝐺)
2 lfuhgr3.2 . . 3 𝐼 = (iEdg‘𝐺)
31, 2lfuhgr2 35106 . 2 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1))
4 df-ne 2927 . . . . 5 ((♯‘𝑥) ≠ 1 ↔ ¬ (♯‘𝑥) = 1)
54ralbii 3076 . . . 4 (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺) ¬ (♯‘𝑥) = 1)
6 ralnex 3056 . . . 4 (∀𝑥 ∈ (Edg‘𝐺) ¬ (♯‘𝑥) = 1 ↔ ¬ ∃𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 1)
7 df-rex 3055 . . . . 5 (∃𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 1 ↔ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1))
87notbii 320 . . . 4 (¬ ∃𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 1 ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1))
95, 6, 83bitri 297 . . 3 (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1))
10 hashen1 14341 . . . . . . . 8 (𝑥 ∈ V → ((♯‘𝑥) = 1 ↔ 𝑥 ≈ 1o))
1110elv 3455 . . . . . . 7 ((♯‘𝑥) = 1 ↔ 𝑥 ≈ 1o)
12 en1 8997 . . . . . . 7 (𝑥 ≈ 1o ↔ ∃𝑎 𝑥 = {𝑎})
1311, 12bitri 275 . . . . . 6 ((♯‘𝑥) = 1 ↔ ∃𝑎 𝑥 = {𝑎})
1413anbi2i 623 . . . . 5 ((𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
1514exbii 1848 . . . 4 (∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
1615notbii 320 . . 3 (¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
17 19.3v 1982 . . . . . . . 8 (∀𝑎 𝑥 ∈ (Edg‘𝐺) ↔ 𝑥 ∈ (Edg‘𝐺))
18 19.29 1873 . . . . . . . 8 ((∀𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
1917, 18sylanbr 582 . . . . . . 7 ((𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
20 eleq1 2817 . . . . . . . . 9 (𝑥 = {𝑎} → (𝑥 ∈ (Edg‘𝐺) ↔ {𝑎} ∈ (Edg‘𝐺)))
2120biimpac 478 . . . . . . . 8 ((𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → {𝑎} ∈ (Edg‘𝐺))
2221eximi 1835 . . . . . . 7 (∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺))
2319, 22syl 17 . . . . . 6 ((𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺))
2423exlimiv 1930 . . . . 5 (∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺))
25 dfclel 2805 . . . . . . . 8 ({𝑎} ∈ (Edg‘𝐺) ↔ ∃𝑥(𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)))
26 pm3.22 459 . . . . . . . . 9 ((𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
2726eximi 1835 . . . . . . . 8 (∃𝑥(𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
2825, 27sylbi 217 . . . . . . 7 ({𝑎} ∈ (Edg‘𝐺) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
2928eximi 1835 . . . . . 6 (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑎𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
30 excomim 2164 . . . . . 6 (∃𝑎𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑥𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
31 19.40 1886 . . . . . . . 8 (∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → (∃𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
32 ax5e 1912 . . . . . . . . 9 (∃𝑎 𝑥 ∈ (Edg‘𝐺) → 𝑥 ∈ (Edg‘𝐺))
3332anim1i 615 . . . . . . . 8 ((∃𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3431, 33syl 17 . . . . . . 7 (∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3534eximi 1835 . . . . . 6 (∃𝑥𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3629, 30, 353syl 18 . . . . 5 (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3724, 36impbii 209 . . . 4 (∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) ↔ ∃𝑎{𝑎} ∈ (Edg‘𝐺))
3837notbii 320 . . 3 (¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))
399, 16, 383bitri 297 . 2 (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))
403, 39bitrdi 287 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  𝒫 cpw 4565  {csn 4591   class class class wbr 5109  dom cdm 5640  wf 6509  cfv 6513  1oc1o 8429  cen 8917  1c1 11075  cle 11215  2c2 12242  chash 14301  Vtxcvtx 28929  iEdgciedg 28930  Edgcedg 28980  UHGraphcuhgr 28989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-hash 14302  df-edg 28981  df-uhgr 28991
This theorem is referenced by:  acycgrislfgr  35139
  Copyright terms: Public domain W3C validator