Proof of Theorem lfuhgr3
| Step | Hyp | Ref
| Expression |
| 1 | | lfuhgr3.1 |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | lfuhgr3.2 |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | 1, 2 | lfuhgr2 35106 |
. 2
⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
| 4 | | df-ne 2927 |
. . . . 5
⊢
((♯‘𝑥)
≠ 1 ↔ ¬ (♯‘𝑥) = 1) |
| 5 | 4 | ralbii 3076 |
. . . 4
⊢
(∀𝑥 ∈
(Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺) ¬ (♯‘𝑥) = 1) |
| 6 | | ralnex 3056 |
. . . 4
⊢
(∀𝑥 ∈
(Edg‘𝐺) ¬
(♯‘𝑥) = 1
↔ ¬ ∃𝑥
∈ (Edg‘𝐺)(♯‘𝑥) = 1) |
| 7 | | df-rex 3055 |
. . . . 5
⊢
(∃𝑥 ∈
(Edg‘𝐺)(♯‘𝑥) = 1 ↔ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1)) |
| 8 | 7 | notbii 320 |
. . . 4
⊢ (¬
∃𝑥 ∈
(Edg‘𝐺)(♯‘𝑥) = 1 ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1)) |
| 9 | 5, 6, 8 | 3bitri 297 |
. . 3
⊢
(∀𝑥 ∈
(Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1)) |
| 10 | | hashen1 14341 |
. . . . . . . 8
⊢ (𝑥 ∈ V →
((♯‘𝑥) = 1
↔ 𝑥 ≈
1o)) |
| 11 | 10 | elv 3455 |
. . . . . . 7
⊢
((♯‘𝑥) =
1 ↔ 𝑥 ≈
1o) |
| 12 | | en1 8997 |
. . . . . . 7
⊢ (𝑥 ≈ 1o ↔
∃𝑎 𝑥 = {𝑎}) |
| 13 | 11, 12 | bitri 275 |
. . . . . 6
⊢
((♯‘𝑥) =
1 ↔ ∃𝑎 𝑥 = {𝑎}) |
| 14 | 13 | anbi2i 623 |
. . . . 5
⊢ ((𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 15 | 14 | exbii 1848 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 16 | 15 | notbii 320 |
. . 3
⊢ (¬
∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 17 | | 19.3v 1982 |
. . . . . . . 8
⊢
(∀𝑎 𝑥 ∈ (Edg‘𝐺) ↔ 𝑥 ∈ (Edg‘𝐺)) |
| 18 | | 19.29 1873 |
. . . . . . . 8
⊢
((∀𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎})) |
| 19 | 17, 18 | sylanbr 582 |
. . . . . . 7
⊢ ((𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎})) |
| 20 | | eleq1 2817 |
. . . . . . . . 9
⊢ (𝑥 = {𝑎} → (𝑥 ∈ (Edg‘𝐺) ↔ {𝑎} ∈ (Edg‘𝐺))) |
| 21 | 20 | biimpac 478 |
. . . . . . . 8
⊢ ((𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → {𝑎} ∈ (Edg‘𝐺)) |
| 22 | 21 | eximi 1835 |
. . . . . . 7
⊢
(∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 23 | 19, 22 | syl 17 |
. . . . . 6
⊢ ((𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 24 | 23 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 25 | | dfclel 2805 |
. . . . . . . 8
⊢ ({𝑎} ∈ (Edg‘𝐺) ↔ ∃𝑥(𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺))) |
| 26 | | pm3.22 459 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎})) |
| 27 | 26 | eximi 1835 |
. . . . . . . 8
⊢
(∃𝑥(𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎})) |
| 28 | 25, 27 | sylbi 217 |
. . . . . . 7
⊢ ({𝑎} ∈ (Edg‘𝐺) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎})) |
| 29 | 28 | eximi 1835 |
. . . . . 6
⊢
(∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑎∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎})) |
| 30 | | excomim 2164 |
. . . . . 6
⊢
(∃𝑎∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑥∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎})) |
| 31 | | 19.40 1886 |
. . . . . . . 8
⊢
(∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → (∃𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 32 | | ax5e 1912 |
. . . . . . . . 9
⊢
(∃𝑎 𝑥 ∈ (Edg‘𝐺) → 𝑥 ∈ (Edg‘𝐺)) |
| 33 | 32 | anim1i 615 |
. . . . . . . 8
⊢
((∃𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 34 | 31, 33 | syl 17 |
. . . . . . 7
⊢
(∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 35 | 34 | eximi 1835 |
. . . . . 6
⊢
(∃𝑥∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 36 | 29, 30, 35 | 3syl 18 |
. . . . 5
⊢
(∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎})) |
| 37 | 24, 36 | impbii 209 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) ↔ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 38 | 37 | notbii 320 |
. . 3
⊢ (¬
∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 39 | 9, 16, 38 | 3bitri 297 |
. 2
⊢
(∀𝑥 ∈
(Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 40 | 3, 39 | bitrdi 287 |
1
⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |