MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relopabi Structured version   Visualization version   GIF version

Theorem relopabi 5846
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) Remove dependency on ax-sep 5317, ax-nul 5324, ax-pr 5447. (Revised by KP, 25-Oct-2021.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabi Rel 𝐴

Proof of Theorem relopabi
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . . . . 7 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 5229 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2768 . . . . . 6 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
43eqabri 2888 . . . . 5 (𝑧𝐴 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 simpl 482 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 = ⟨𝑥, 𝑦⟩)
652eximi 1834 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
74, 6sylbi 217 . . . 4 (𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
8 ax6evr 2014 . . . . . . . . 9 𝑢 𝑦 = 𝑢
9 pm3.21 471 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = 𝑧 → (𝑦 = 𝑢 → (𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧)))
109eximdv 1916 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = 𝑧 → (∃𝑢 𝑦 = 𝑢 → ∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧)))
118, 10mpi 20 . . . . . . . 8 (⟨𝑥, 𝑦⟩ = 𝑧 → ∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧))
12 opeq2 4898 . . . . . . . . . 10 (𝑦 = 𝑢 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩)
13 eqtr2 2764 . . . . . . . . . . 11 ((⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩ ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → ⟨𝑥, 𝑢⟩ = 𝑧)
1413eqcomd 2746 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩ ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → 𝑧 = ⟨𝑥, 𝑢⟩)
1512, 14sylan 579 . . . . . . . . 9 ((𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → 𝑧 = ⟨𝑥, 𝑢⟩)
1615eximi 1833 . . . . . . . 8 (∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
1711, 16syl 17 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝑧 → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
1817eqcoms 2748 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
19182eximi 1834 . . . . 5 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
20 excomim 2164 . . . . 5 (∃𝑥𝑦𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
2119, 20syl 17 . . . 4 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
22 vex 3492 . . . . . . . . 9 𝑥 ∈ V
23 vex 3492 . . . . . . . . 9 𝑢 ∈ V
2422, 23pm3.2i 470 . . . . . . . 8 (𝑥 ∈ V ∧ 𝑢 ∈ V)
2524jctr 524 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑢⟩ → (𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
26252eximi 1834 . . . . . 6 (∃𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
27 df-xp 5706 . . . . . . . 8 (V × V) = {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ V ∧ 𝑢 ∈ V)}
28 df-opab 5229 . . . . . . . 8 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ V ∧ 𝑢 ∈ V)} = {𝑧 ∣ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V))}
2927, 28eqtri 2768 . . . . . . 7 (V × V) = {𝑧 ∣ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V))}
3029eqabri 2888 . . . . . 6 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
3126, 30sylibr 234 . . . . 5 (∃𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → 𝑧 ∈ (V × V))
3231eximi 1833 . . . 4 (∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑦 𝑧 ∈ (V × V))
33 ax5e 1911 . . . 4 (∃𝑦 𝑧 ∈ (V × V) → 𝑧 ∈ (V × V))
347, 21, 32, 334syl 19 . . 3 (𝑧𝐴𝑧 ∈ (V × V))
3534ssriv 4012 . 2 𝐴 ⊆ (V × V)
36 df-rel 5707 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3735, 36mpbir 231 1 Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  cop 4654  {copab 5228   × cxp 5698  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  relopab  5848  relttrcl  9781  erclwwlkrel  30049  erclwwlknrel  30098
  Copyright terms: Public domain W3C validator