MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relopabi Structured version   Visualization version   GIF version

Theorem relopabi 5681
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) Remove dependency on ax-sep 5189, ax-nul 5196, ax-pr 5317. (Revised by KP, 25-Oct-2021.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabi Rel 𝐴

Proof of Theorem relopabi
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . . . . . 8 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 5115 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2847 . . . . . . 7 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
43abeq2i 2951 . . . . . 6 (𝑧𝐴 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 simpl 486 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 = ⟨𝑥, 𝑦⟩)
652eximi 1837 . . . . . 6 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
74, 6sylbi 220 . . . . 5 (𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
8 ax6evr 2023 . . . . . . . . . 10 𝑢 𝑦 = 𝑢
9 pm3.21 475 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = 𝑧 → (𝑦 = 𝑢 → (𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧)))
109eximdv 1919 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = 𝑧 → (∃𝑢 𝑦 = 𝑢 → ∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧)))
118, 10mpi 20 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = 𝑧 → ∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧))
12 opeq2 4789 . . . . . . . . . . 11 (𝑦 = 𝑢 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩)
13 eqtr2 2845 . . . . . . . . . . . 12 ((⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩ ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → ⟨𝑥, 𝑢⟩ = 𝑧)
1413eqcomd 2830 . . . . . . . . . . 11 ((⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩ ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → 𝑧 = ⟨𝑥, 𝑢⟩)
1512, 14sylan 583 . . . . . . . . . 10 ((𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → 𝑧 = ⟨𝑥, 𝑢⟩)
1615eximi 1836 . . . . . . . . 9 (∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
1711, 16syl 17 . . . . . . . 8 (⟨𝑥, 𝑦⟩ = 𝑧 → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
1817eqcoms 2832 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
19182eximi 1837 . . . . . 6 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
20 excomim 2171 . . . . . 6 (∃𝑥𝑦𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
2119, 20syl 17 . . . . 5 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
22 vex 3483 . . . . . . . . . 10 𝑥 ∈ V
23 vex 3483 . . . . . . . . . 10 𝑢 ∈ V
2422, 23pm3.2i 474 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑢 ∈ V)
2524jctr 528 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑢⟩ → (𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
26252eximi 1837 . . . . . . 7 (∃𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
27 df-xp 5548 . . . . . . . . 9 (V × V) = {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ V ∧ 𝑢 ∈ V)}
28 df-opab 5115 . . . . . . . . 9 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ V ∧ 𝑢 ∈ V)} = {𝑧 ∣ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V))}
2927, 28eqtri 2847 . . . . . . . 8 (V × V) = {𝑧 ∣ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V))}
3029abeq2i 2951 . . . . . . 7 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
3126, 30sylibr 237 . . . . . 6 (∃𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → 𝑧 ∈ (V × V))
3231eximi 1836 . . . . 5 (∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑦 𝑧 ∈ (V × V))
337, 21, 323syl 18 . . . 4 (𝑧𝐴 → ∃𝑦 𝑧 ∈ (V × V))
34 ax5e 1914 . . . 4 (∃𝑦 𝑧 ∈ (V × V) → 𝑧 ∈ (V × V))
3533, 34syl 17 . . 3 (𝑧𝐴𝑧 ∈ (V × V))
3635ssriv 3957 . 2 𝐴 ⊆ (V × V)
37 df-rel 5549 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3836, 37mpbir 234 1 Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wex 1781  wcel 2115  {cab 2802  Vcvv 3480  wss 3919  cop 4556  {copab 5114   × cxp 5540  Rel wrel 5547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-un 3924  df-in 3926  df-ss 3936  df-sn 4551  df-pr 4553  df-op 4557  df-opab 5115  df-xp 5548  df-rel 5549
This theorem is referenced by:  relopab  5683  mptrel  5684  reli  5685  rele  5686  relcnv  5954  cotrg  5958  relco  6084  brfvopabrbr  6756  reloprab  7206  reldmoprab  7252  relrpss  7444  eqer  8320  ecopover  8397  relen  8510  reldom  8511  relfsupp  8832  relwdom  9027  fpwwe2lem2  10052  fpwwe2lem3  10053  fpwwe2lem6  10055  fpwwe2lem7  10056  fpwwe2lem9  10058  fpwwe2lem11  10060  fpwwe2lem12  10061  fpwwe2lem13  10062  fpwwelem  10065  climrel  14849  rlimrel  14850  brstruct  16492  sscrel  17083  gaorber  18438  sylow2a  18744  efgrelexlemb  18876  efgcpbllemb  18881  rellindf  20952  2ndcctbss  22063  refrel  22116  vitalilem1  24215  lgsquadlem1  25967  lgsquadlem2  25968  relsubgr  27062  erclwwlkrel  27805  erclwwlknrel  27854  vcrel  28346  h2hlm  28766  hlimi  28974  relmntop  31322  relae  31556  dmscut  33329  fnerel  33743  filnetlem3  33785  brabg2  35099  heiborlem3  35196  heiborlem4  35197  relrngo  35279  isdivrngo  35333  drngoi  35334  isdrngo1  35339  riscer  35371  relcoss  35773  relssr  35845  prter1  36120  prter3  36123  prjsper  39518  reldvds  40939  nelbrim  43757  isomgrrel  44266  rellininds  44778
  Copyright terms: Public domain W3C validator