MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relopabi Structured version   Visualization version   GIF version

Theorem relopabi 5820
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) Remove dependency on ax-sep 5298, ax-nul 5305, ax-pr 5426. (Revised by KP, 25-Oct-2021.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabi Rel 𝐴

Proof of Theorem relopabi
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . . . . . 8 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 5210 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2760 . . . . . . 7 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
43eqabri 2877 . . . . . 6 (𝑧𝐴 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 simpl 483 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 = ⟨𝑥, 𝑦⟩)
652eximi 1838 . . . . . 6 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
74, 6sylbi 216 . . . . 5 (𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
8 ax6evr 2018 . . . . . . . . . 10 𝑢 𝑦 = 𝑢
9 pm3.21 472 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = 𝑧 → (𝑦 = 𝑢 → (𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧)))
109eximdv 1920 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = 𝑧 → (∃𝑢 𝑦 = 𝑢 → ∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧)))
118, 10mpi 20 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = 𝑧 → ∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧))
12 opeq2 4873 . . . . . . . . . . 11 (𝑦 = 𝑢 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩)
13 eqtr2 2756 . . . . . . . . . . . 12 ((⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩ ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → ⟨𝑥, 𝑢⟩ = 𝑧)
1413eqcomd 2738 . . . . . . . . . . 11 ((⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩ ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → 𝑧 = ⟨𝑥, 𝑢⟩)
1512, 14sylan 580 . . . . . . . . . 10 ((𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → 𝑧 = ⟨𝑥, 𝑢⟩)
1615eximi 1837 . . . . . . . . 9 (∃𝑢(𝑦 = 𝑢 ∧ ⟨𝑥, 𝑦⟩ = 𝑧) → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
1711, 16syl 17 . . . . . . . 8 (⟨𝑥, 𝑦⟩ = 𝑧 → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
1817eqcoms 2740 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
19182eximi 1838 . . . . . 6 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
20 excomim 2163 . . . . . 6 (∃𝑥𝑦𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
2119, 20syl 17 . . . . 5 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩)
22 vex 3478 . . . . . . . . . 10 𝑥 ∈ V
23 vex 3478 . . . . . . . . . 10 𝑢 ∈ V
2422, 23pm3.2i 471 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑢 ∈ V)
2524jctr 525 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑢⟩ → (𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
26252eximi 1838 . . . . . . 7 (∃𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
27 df-xp 5681 . . . . . . . . 9 (V × V) = {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ V ∧ 𝑢 ∈ V)}
28 df-opab 5210 . . . . . . . . 9 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ V ∧ 𝑢 ∈ V)} = {𝑧 ∣ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V))}
2927, 28eqtri 2760 . . . . . . . 8 (V × V) = {𝑧 ∣ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V))}
3029eqabri 2877 . . . . . . 7 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑢(𝑧 = ⟨𝑥, 𝑢⟩ ∧ (𝑥 ∈ V ∧ 𝑢 ∈ V)))
3126, 30sylibr 233 . . . . . 6 (∃𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → 𝑧 ∈ (V × V))
3231eximi 1837 . . . . 5 (∃𝑦𝑥𝑢 𝑧 = ⟨𝑥, 𝑢⟩ → ∃𝑦 𝑧 ∈ (V × V))
337, 21, 323syl 18 . . . 4 (𝑧𝐴 → ∃𝑦 𝑧 ∈ (V × V))
34 ax5e 1915 . . . 4 (∃𝑦 𝑧 ∈ (V × V) → 𝑧 ∈ (V × V))
3533, 34syl 17 . . 3 (𝑧𝐴𝑧 ∈ (V × V))
3635ssriv 3985 . 2 𝐴 ⊆ (V × V)
37 df-rel 5682 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3836, 37mpbir 230 1 Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2709  Vcvv 3474  wss 3947  cop 4633  {copab 5209   × cxp 5673  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-xp 5681  df-rel 5682
This theorem is referenced by:  relopab  5822  relttrcl  9703  erclwwlkrel  29259  erclwwlknrel  29308
  Copyright terms: Public domain W3C validator