MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcosseq Structured version   Visualization version   GIF version

Theorem dmcosseq 5871
Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcosseq (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)

Proof of Theorem dmcosseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 5869 . . 3 dom (𝐴𝐵) ⊆ dom 𝐵
21a1i 11 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐵)
3 ssel 3910 . . . . . . . 8 (ran 𝐵 ⊆ dom 𝐴 → (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
4 vex 3426 . . . . . . . . . . 11 𝑦 ∈ V
54elrn 5791 . . . . . . . . . 10 (𝑦 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑦)
64eldm 5798 . . . . . . . . . 10 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 𝑦𝐴𝑧)
75, 6imbi12i 350 . . . . . . . . 9 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) ↔ (∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
8 19.8a 2176 . . . . . . . . . . 11 (𝑥𝐵𝑦 → ∃𝑥 𝑥𝐵𝑦)
98imim1i 63 . . . . . . . . . 10 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
10 pm3.2 469 . . . . . . . . . . 11 (𝑥𝐵𝑦 → (𝑦𝐴𝑧 → (𝑥𝐵𝑦𝑦𝐴𝑧)))
1110eximdv 1921 . . . . . . . . . 10 (𝑥𝐵𝑦 → (∃𝑧 𝑦𝐴𝑧 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
129, 11sylcom 30 . . . . . . . . 9 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
137, 12sylbi 216 . . . . . . . 8 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
143, 13syl 17 . . . . . . 7 (ran 𝐵 ⊆ dom 𝐴 → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
1514eximdv 1921 . . . . . 6 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
16 excom 2164 . . . . . 6 (∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) ↔ ∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧))
1715, 16syl6ibr 251 . . . . 5 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧)))
18 vex 3426 . . . . . . 7 𝑥 ∈ V
19 vex 3426 . . . . . . 7 𝑧 ∈ V
2018, 19opelco 5769 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2120exbii 1851 . . . . 5 (∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2217, 21syl6ibr 251 . . . 4 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵)))
2318eldm 5798 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
2418eldm2 5799 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵))
2522, 23, 243imtr4g 295 . . 3 (ran 𝐵 ⊆ dom 𝐴 → (𝑥 ∈ dom 𝐵𝑥 ∈ dom (𝐴𝐵)))
2625ssrdv 3923 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom (𝐴𝐵))
272, 26eqssd 3934 1 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wss 3883  cop 4564   class class class wbr 5070  dom cdm 5580  ran crn 5581  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591
This theorem is referenced by:  dmcoeq  5872  fncoOLD  6534  cycpmconjv  31311  dmcoss3  36498  comptiunov2i  41203  dvsinax  43344  hoicvr  43976  fnresfnco  44422
  Copyright terms: Public domain W3C validator