Step | Hyp | Ref
| Expression |
1 | | dmcoss 5997 |
. . 3
⊢ dom
(𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
2 | 1 | a1i 11 |
. 2
⊢ (ran
𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵) |
3 | | ssel 4002 |
. . . . . . . 8
⊢ (ran
𝐵 ⊆ dom 𝐴 → (𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴)) |
4 | | vex 3492 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
5 | 4 | elrn 5918 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑦) |
6 | 4 | eldm 5925 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 𝑦𝐴𝑧) |
7 | 5, 6 | imbi12i 350 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴) ↔ (∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧)) |
8 | | 19.8a 2182 |
. . . . . . . . . . 11
⊢ (𝑥𝐵𝑦 → ∃𝑥 𝑥𝐵𝑦) |
9 | 8 | imim1i 63 |
. . . . . . . . . 10
⊢
((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧)) |
10 | | pm3.2 469 |
. . . . . . . . . . 11
⊢ (𝑥𝐵𝑦 → (𝑦𝐴𝑧 → (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
11 | 10 | eximdv 1916 |
. . . . . . . . . 10
⊢ (𝑥𝐵𝑦 → (∃𝑧 𝑦𝐴𝑧 → ∃𝑧(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
12 | 9, 11 | sylcom 30 |
. . . . . . . . 9
⊢
((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
13 | 7, 12 | sylbi 217 |
. . . . . . . 8
⊢ ((𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
14 | 3, 13 | syl 17 |
. . . . . . 7
⊢ (ran
𝐵 ⊆ dom 𝐴 → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
15 | 14 | eximdv 1916 |
. . . . . 6
⊢ (ran
𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑦∃𝑧(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
16 | | breq2 5170 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑤)) |
17 | | breq1 5169 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑦𝐴𝑧 ↔ 𝑤𝐴𝑧)) |
18 | 16, 17 | anbi12d 631 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑤 ∧ 𝑤𝐴𝑧))) |
19 | 18 | excomimw 2043 |
. . . . . 6
⊢
(∃𝑦∃𝑧(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑧∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
20 | 15, 19 | syl6 35 |
. . . . 5
⊢ (ran
𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
21 | | vex 3492 |
. . . . . . 7
⊢ 𝑥 ∈ V |
22 | | vex 3492 |
. . . . . . 7
⊢ 𝑧 ∈ V |
23 | 21, 22 | opelco 5896 |
. . . . . 6
⊢
(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
24 | 23 | exbii 1846 |
. . . . 5
⊢
(∃𝑧〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
25 | 20, 24 | imbitrrdi 252 |
. . . 4
⊢ (ran
𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵))) |
26 | 21 | eldm 5925 |
. . . 4
⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
27 | 21 | eldm2 5926 |
. . . 4
⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑧〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵)) |
28 | 25, 26, 27 | 3imtr4g 296 |
. . 3
⊢ (ran
𝐵 ⊆ dom 𝐴 → (𝑥 ∈ dom 𝐵 → 𝑥 ∈ dom (𝐴 ∘ 𝐵))) |
29 | 28 | ssrdv 4014 |
. 2
⊢ (ran
𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom (𝐴 ∘ 𝐵)) |
30 | 2, 29 | eqssd 4026 |
1
⊢ (ran
𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |