Step | Hyp | Ref
| Expression |
1 | | ssid 4031 |
. . 3
⊢ 𝐴 ⊆ 𝐴 |
2 | | ssid 4031 |
. . . . 5
⊢ 𝑧 ⊆ 𝑧 |
3 | | sseq2 4035 |
. . . . . 6
⊢ (𝑤 = 𝑧 → (𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑧)) |
4 | 3 | rspcev 3635 |
. . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑧 ⊆ 𝑧) → ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) |
5 | 2, 4 | mpan2 690 |
. . . 4
⊢ (𝑧 ∈ 𝐴 → ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) |
6 | 5 | rgen 3069 |
. . 3
⊢
∀𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 |
7 | | sseq1 4034 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
8 | | rexeq 3330 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤)) |
9 | 8 | ralbidv 3184 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤)) |
10 | 7, 9 | anbi12d 631 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤))) |
11 | 10 | spcegv 3610 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝐴 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
12 | 1, 6, 11 | mp2ani 697 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
13 | | fvex 6933 |
. . . . . 6
⊢
(card‘𝑦)
∈ V |
14 | 13 | isseti 3506 |
. . . . 5
⊢
∃𝑥 𝑥 = (card‘𝑦) |
15 | | 19.41v 1949 |
. . . . 5
⊢
(∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (∃𝑥 𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
16 | 14, 15 | mpbiran 708 |
. . . 4
⊢
(∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
17 | 16 | exbii 1846 |
. . 3
⊢
(∃𝑦∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
18 | | fveq2 6920 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (card‘𝑦) = (card‘𝑣)) |
19 | 18 | eqeq2d 2751 |
. . . . 5
⊢ (𝑦 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝑣))) |
20 | | sseq1 4034 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (𝑦 ⊆ 𝐴 ↔ 𝑣 ⊆ 𝐴)) |
21 | | rexeq 3330 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤)) |
22 | 21 | ralbidv 3184 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤)) |
23 | 20, 22 | anbi12d 631 |
. . . . 5
⊢ (𝑦 = 𝑣 → ((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝑣 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤))) |
24 | 19, 23 | anbi12d 631 |
. . . 4
⊢ (𝑦 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑥 = (card‘𝑣) ∧ (𝑣 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤)))) |
25 | 24 | excomimw 2043 |
. . 3
⊢
(∃𝑦∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
26 | 17, 25 | sylbir 235 |
. 2
⊢
(∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
27 | 12, 26 | syl 17 |
1
⊢ (𝐴 ∈ 𝑉 → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |