MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflem Structured version   Visualization version   GIF version

Theorem cflem 10133
Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set 𝐴. (Contributed by NM, 24-Apr-2004.) Avoid ax-11 2160. (Revised by BTernaryTau, 25-Jul-2025.)
Assertion
Ref Expression
cflem (𝐴𝑉 → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cflem
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ssid 3957 . . 3 𝐴𝐴
2 ssid 3957 . . . . 5 𝑧𝑧
3 sseq2 3961 . . . . . 6 (𝑤 = 𝑧 → (𝑧𝑤𝑧𝑧))
43rspcev 3577 . . . . 5 ((𝑧𝐴𝑧𝑧) → ∃𝑤𝐴 𝑧𝑤)
52, 4mpan2 691 . . . 4 (𝑧𝐴 → ∃𝑤𝐴 𝑧𝑤)
65rgen 3049 . . 3 𝑧𝐴𝑤𝐴 𝑧𝑤
7 sseq1 3960 . . . . 5 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
8 rexeq 3288 . . . . . 6 (𝑦 = 𝐴 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝐴 𝑧𝑤))
98ralbidv 3155 . . . . 5 (𝑦 = 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
107, 9anbi12d 632 . . . 4 (𝑦 = 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)))
1110spcegv 3552 . . 3 (𝐴𝑉 → ((𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤) → ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
121, 6, 11mp2ani 698 . 2 (𝐴𝑉 → ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
13 fvex 6835 . . . . . 6 (card‘𝑦) ∈ V
1413isseti 3454 . . . . 5 𝑥 𝑥 = (card‘𝑦)
15 19.41v 1950 . . . . 5 (∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (∃𝑥 𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1614, 15mpbiran 709 . . . 4 (∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
1716exbii 1849 . . 3 (∃𝑦𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
18 fveq2 6822 . . . . . 6 (𝑦 = 𝑣 → (card‘𝑦) = (card‘𝑣))
1918eqeq2d 2742 . . . . 5 (𝑦 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝑣)))
20 sseq1 3960 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝐴𝑣𝐴))
21 rexeq 3288 . . . . . . 7 (𝑦 = 𝑣 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝑣 𝑧𝑤))
2221ralbidv 3155 . . . . . 6 (𝑦 = 𝑣 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝑣 𝑧𝑤))
2320, 22anbi12d 632 . . . . 5 (𝑦 = 𝑣 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝑣𝐴 ∧ ∀𝑧𝐴𝑤𝑣 𝑧𝑤)))
2419, 23anbi12d 632 . . . 4 (𝑦 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝑣) ∧ (𝑣𝐴 ∧ ∀𝑧𝐴𝑤𝑣 𝑧𝑤))))
2524excomimw 2045 . . 3 (∃𝑦𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2617, 25sylbir 235 . 2 (∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2712, 26syl 17 1 (𝐴𝑉 → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  wss 3902  cfv 6481  cardccrd 9825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489
This theorem is referenced by:  cfval  10135  cff  10136  cff1  10146
  Copyright terms: Public domain W3C validator