MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflem Structured version   Visualization version   GIF version

Theorem cflem 9711
Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set 𝐴. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
cflem (𝐴𝑉 → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cflem
StepHypRef Expression
1 ssid 3916 . . 3 𝐴𝐴
2 ssid 3916 . . . . 5 𝑧𝑧
3 sseq2 3920 . . . . . 6 (𝑤 = 𝑧 → (𝑧𝑤𝑧𝑧))
43rspcev 3543 . . . . 5 ((𝑧𝐴𝑧𝑧) → ∃𝑤𝐴 𝑧𝑤)
52, 4mpan2 690 . . . 4 (𝑧𝐴 → ∃𝑤𝐴 𝑧𝑤)
65rgen 3080 . . 3 𝑧𝐴𝑤𝐴 𝑧𝑤
7 sseq1 3919 . . . . 5 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
8 rexeq 3324 . . . . . 6 (𝑦 = 𝐴 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝐴 𝑧𝑤))
98ralbidv 3126 . . . . 5 (𝑦 = 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
107, 9anbi12d 633 . . . 4 (𝑦 = 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)))
1110spcegv 3517 . . 3 (𝐴𝑉 → ((𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤) → ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
121, 6, 11mp2ani 697 . 2 (𝐴𝑉 → ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
13 fvex 6675 . . . . . 6 (card‘𝑦) ∈ V
1413isseti 3424 . . . . 5 𝑥 𝑥 = (card‘𝑦)
15 19.41v 1950 . . . . 5 (∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (∃𝑥 𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1614, 15mpbiran 708 . . . 4 (∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
1716exbii 1849 . . 3 (∃𝑦𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
18 excom 2166 . . 3 (∃𝑦𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1917, 18bitr3i 280 . 2 (∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2012, 19sylib 221 1 (𝐴𝑉 → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3070  wrex 3071  wss 3860  cfv 6339  cardccrd 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-nul 5179
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-sn 4526  df-pr 4528  df-uni 4802  df-iota 6298  df-fv 6347
This theorem is referenced by:  cfval  9712  cff  9713  cff1  9723
  Copyright terms: Public domain W3C validator