Proof of Theorem cflem
Step | Hyp | Ref
| Expression |
1 | | ssid 3939 |
. . 3
⊢ 𝐴 ⊆ 𝐴 |
2 | | ssid 3939 |
. . . . 5
⊢ 𝑧 ⊆ 𝑧 |
3 | | sseq2 3943 |
. . . . . 6
⊢ (𝑤 = 𝑧 → (𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑧)) |
4 | 3 | rspcev 3552 |
. . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑧 ⊆ 𝑧) → ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) |
5 | 2, 4 | mpan2 687 |
. . . 4
⊢ (𝑧 ∈ 𝐴 → ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) |
6 | 5 | rgen 3073 |
. . 3
⊢
∀𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 |
7 | | sseq1 3942 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
8 | | rexeq 3334 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤)) |
9 | 8 | ralbidv 3120 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤)) |
10 | 7, 9 | anbi12d 630 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤))) |
11 | 10 | spcegv 3526 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝐴 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
12 | 1, 6, 11 | mp2ani 694 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
13 | | fvex 6769 |
. . . . . 6
⊢
(card‘𝑦)
∈ V |
14 | 13 | isseti 3437 |
. . . . 5
⊢
∃𝑥 𝑥 = (card‘𝑦) |
15 | | 19.41v 1954 |
. . . . 5
⊢
(∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (∃𝑥 𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
16 | 14, 15 | mpbiran 705 |
. . . 4
⊢
(∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
17 | 16 | exbii 1851 |
. . 3
⊢
(∃𝑦∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
18 | | excom 2164 |
. . 3
⊢
(∃𝑦∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
19 | 17, 18 | bitr3i 276 |
. 2
⊢
(∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
20 | 12, 19 | sylib 217 |
1
⊢ (𝐴 ∈ 𝑉 → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |