| Step | Hyp | Ref
| Expression |
| 1 | | ssid 4006 |
. . 3
⊢ 𝐴 ⊆ 𝐴 |
| 2 | | ssid 4006 |
. . . . 5
⊢ 𝑧 ⊆ 𝑧 |
| 3 | | sseq2 4010 |
. . . . . 6
⊢ (𝑤 = 𝑧 → (𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑧)) |
| 4 | 3 | rspcev 3622 |
. . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑧 ⊆ 𝑧) → ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) |
| 5 | 2, 4 | mpan2 691 |
. . . 4
⊢ (𝑧 ∈ 𝐴 → ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) |
| 6 | 5 | rgen 3063 |
. . 3
⊢
∀𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 |
| 7 | | sseq1 4009 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 8 | | rexeq 3322 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤)) |
| 9 | 8 | ralbidv 3178 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤)) |
| 10 | 7, 9 | anbi12d 632 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤))) |
| 11 | 10 | spcegv 3597 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝐴 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
| 12 | 1, 6, 11 | mp2ani 698 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
| 13 | | fvex 6919 |
. . . . . 6
⊢
(card‘𝑦)
∈ V |
| 14 | 13 | isseti 3498 |
. . . . 5
⊢
∃𝑥 𝑥 = (card‘𝑦) |
| 15 | | 19.41v 1949 |
. . . . 5
⊢
(∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (∃𝑥 𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
| 16 | 14, 15 | mpbiran 709 |
. . . 4
⊢
(∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
| 17 | 16 | exbii 1848 |
. . 3
⊢
(∃𝑦∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
| 18 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (card‘𝑦) = (card‘𝑣)) |
| 19 | 18 | eqeq2d 2748 |
. . . . 5
⊢ (𝑦 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝑣))) |
| 20 | | sseq1 4009 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (𝑦 ⊆ 𝐴 ↔ 𝑣 ⊆ 𝐴)) |
| 21 | | rexeq 3322 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤)) |
| 22 | 21 | ralbidv 3178 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤)) |
| 23 | 20, 22 | anbi12d 632 |
. . . . 5
⊢ (𝑦 = 𝑣 → ((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝑣 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤))) |
| 24 | 19, 23 | anbi12d 632 |
. . . 4
⊢ (𝑦 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑥 = (card‘𝑣) ∧ (𝑣 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤)))) |
| 25 | 24 | excomimw 2043 |
. . 3
⊢
(∃𝑦∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
| 26 | 17, 25 | sylbir 235 |
. 2
⊢
(∃𝑦(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
| 27 | 12, 26 | syl 17 |
1
⊢ (𝐴 ∈ 𝑉 → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |