MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflem Structured version   Visualization version   GIF version

Theorem cflem 10143
Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set 𝐴. (Contributed by NM, 24-Apr-2004.) Avoid ax-11 2162. (Revised by BTernaryTau, 25-Jul-2025.)
Assertion
Ref Expression
cflem (𝐴𝑉 → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cflem
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ssid 3953 . . 3 𝐴𝐴
2 ssid 3953 . . . . 5 𝑧𝑧
3 sseq2 3957 . . . . . 6 (𝑤 = 𝑧 → (𝑧𝑤𝑧𝑧))
43rspcev 3573 . . . . 5 ((𝑧𝐴𝑧𝑧) → ∃𝑤𝐴 𝑧𝑤)
52, 4mpan2 691 . . . 4 (𝑧𝐴 → ∃𝑤𝐴 𝑧𝑤)
65rgen 3050 . . 3 𝑧𝐴𝑤𝐴 𝑧𝑤
7 sseq1 3956 . . . . 5 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
8 rexeq 3289 . . . . . 6 (𝑦 = 𝐴 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝐴 𝑧𝑤))
98ralbidv 3156 . . . . 5 (𝑦 = 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
107, 9anbi12d 632 . . . 4 (𝑦 = 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)))
1110spcegv 3548 . . 3 (𝐴𝑉 → ((𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤) → ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
121, 6, 11mp2ani 698 . 2 (𝐴𝑉 → ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
13 fvex 6841 . . . . . 6 (card‘𝑦) ∈ V
1413isseti 3455 . . . . 5 𝑥 𝑥 = (card‘𝑦)
15 19.41v 1950 . . . . 5 (∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (∃𝑥 𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1614, 15mpbiran 709 . . . 4 (∃𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
1716exbii 1849 . . 3 (∃𝑦𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
18 fveq2 6828 . . . . . 6 (𝑦 = 𝑣 → (card‘𝑦) = (card‘𝑣))
1918eqeq2d 2744 . . . . 5 (𝑦 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝑣)))
20 sseq1 3956 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝐴𝑣𝐴))
21 rexeq 3289 . . . . . . 7 (𝑦 = 𝑣 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝑣 𝑧𝑤))
2221ralbidv 3156 . . . . . 6 (𝑦 = 𝑣 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝑣 𝑧𝑤))
2320, 22anbi12d 632 . . . . 5 (𝑦 = 𝑣 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝑣𝐴 ∧ ∀𝑧𝐴𝑤𝑣 𝑧𝑤)))
2419, 23anbi12d 632 . . . 4 (𝑦 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝑣) ∧ (𝑣𝐴 ∧ ∀𝑧𝐴𝑤𝑣 𝑧𝑤))))
2524excomimw 2045 . . 3 (∃𝑦𝑥(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2617, 25sylbir 235 . 2 (∃𝑦(𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2712, 26syl 17 1 (𝐴𝑉 → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  wss 3898  cfv 6486  cardccrd 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494
This theorem is referenced by:  cfval  10145  cff  10146  cff1  10156
  Copyright terms: Public domain W3C validator