MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcosseqOLD Structured version   Visualization version   GIF version

Theorem dmcosseqOLD 5920
Description: Obsolete version of dmcosseq 5919 as of 31-Dec-2025. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-11 2158. (Revised by BTernaryTau, 23-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dmcosseqOLD (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)

Proof of Theorem dmcosseqOLD
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 5916 . . 3 dom (𝐴𝐵) ⊆ dom 𝐵
21a1i 11 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐵)
3 ssel 3929 . . . . . . . 8 (ran 𝐵 ⊆ dom 𝐴 → (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
4 vex 3440 . . . . . . . . . . 11 𝑦 ∈ V
54elrn 5836 . . . . . . . . . 10 (𝑦 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑦)
64eldm 5843 . . . . . . . . . 10 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 𝑦𝐴𝑧)
75, 6imbi12i 350 . . . . . . . . 9 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) ↔ (∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
8 19.8a 2182 . . . . . . . . . . 11 (𝑥𝐵𝑦 → ∃𝑥 𝑥𝐵𝑦)
98imim1i 63 . . . . . . . . . 10 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
10 pm3.2 469 . . . . . . . . . . 11 (𝑥𝐵𝑦 → (𝑦𝐴𝑧 → (𝑥𝐵𝑦𝑦𝐴𝑧)))
1110eximdv 1917 . . . . . . . . . 10 (𝑥𝐵𝑦 → (∃𝑧 𝑦𝐴𝑧 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
129, 11sylcom 30 . . . . . . . . 9 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
137, 12sylbi 217 . . . . . . . 8 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
143, 13syl 17 . . . . . . 7 (ran 𝐵 ⊆ dom 𝐴 → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
1514eximdv 1917 . . . . . 6 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
16 breq2 5096 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝐵𝑦𝑥𝐵𝑤))
17 breq1 5095 . . . . . . . 8 (𝑦 = 𝑤 → (𝑦𝐴𝑧𝑤𝐴𝑧))
1816, 17anbi12d 632 . . . . . . 7 (𝑦 = 𝑤 → ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑤𝑤𝐴𝑧)))
1918excomimw 2044 . . . . . 6 (∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧) → ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2015, 19syl6 35 . . . . 5 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧)))
21 vex 3440 . . . . . . 7 𝑥 ∈ V
22 vex 3440 . . . . . . 7 𝑧 ∈ V
2321, 22opelco 5814 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2423exbii 1848 . . . . 5 (∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2520, 24imbitrrdi 252 . . . 4 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵)))
2621eldm 5843 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
2721eldm2 5844 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵))
2825, 26, 273imtr4g 296 . . 3 (ran 𝐵 ⊆ dom 𝐴 → (𝑥 ∈ dom 𝐵𝑥 ∈ dom (𝐴𝐵)))
2928ssrdv 3941 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom (𝐴𝐵))
302, 29eqssd 3953 1 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wss 3903  cop 4583   class class class wbr 5092  dom cdm 5619  ran crn 5620  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator