MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem4 Structured version   Visualization version   GIF version

Theorem dfac5lem4 10195
Description: Lemma for dfac5 10198. (Contributed by NM, 11-Apr-2004.) Avoid ax-11 2158. (Revised by BTernaryTau, 23-Jun-2025.)
Hypotheses
Ref Expression
dfac5lem.1 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
dfac5lem.2 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
Assertion
Ref Expression
dfac5lem4 (𝜑 → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
Distinct variable groups:   𝑡,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,)   𝐴(𝑣,𝑢,𝑡,)

Proof of Theorem dfac5lem4
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . 6 𝑧 ∈ V
2 neeq1 3009 . . . . . . 7 (𝑢 = 𝑧 → (𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅))
3 eqeq1 2744 . . . . . . . 8 (𝑢 = 𝑧 → (𝑢 = ({𝑡} × 𝑡) ↔ 𝑧 = ({𝑡} × 𝑡)))
43rexbidv 3185 . . . . . . 7 (𝑢 = 𝑧 → (∃𝑡 𝑢 = ({𝑡} × 𝑡) ↔ ∃𝑡 𝑧 = ({𝑡} × 𝑡)))
52, 4anbi12d 631 . . . . . 6 (𝑢 = 𝑧 → ((𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡)) ↔ (𝑧 ≠ ∅ ∧ ∃𝑡 𝑧 = ({𝑡} × 𝑡))))
61, 5elab 3694 . . . . 5 (𝑧 ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))} ↔ (𝑧 ≠ ∅ ∧ ∃𝑡 𝑧 = ({𝑡} × 𝑡)))
76simplbi 497 . . . 4 (𝑧 ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))} → 𝑧 ≠ ∅)
8 dfac5lem.1 . . . 4 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
97, 8eleq2s 2862 . . 3 (𝑧𝐴𝑧 ≠ ∅)
109rgen 3069 . 2 𝑧𝐴 𝑧 ≠ ∅
11 df-an 396 . . . . . . 7 ((𝑥𝑧𝑥𝑤) ↔ ¬ (𝑥𝑧 → ¬ 𝑥𝑤))
121, 5, 8elab2 3698 . . . . . . . . 9 (𝑧𝐴 ↔ (𝑧 ≠ ∅ ∧ ∃𝑡 𝑧 = ({𝑡} × 𝑡)))
1312simprbi 496 . . . . . . . 8 (𝑧𝐴 → ∃𝑡 𝑧 = ({𝑡} × 𝑡))
14 vex 3492 . . . . . . . . . . 11 𝑤 ∈ V
15 neeq1 3009 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢 ≠ ∅ ↔ 𝑤 ≠ ∅))
16 eqeq1 2744 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → (𝑢 = ({𝑡} × 𝑡) ↔ 𝑤 = ({𝑡} × 𝑡)))
1716rexbidv 3185 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (∃𝑡 𝑢 = ({𝑡} × 𝑡) ↔ ∃𝑡 𝑤 = ({𝑡} × 𝑡)))
1815, 17anbi12d 631 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡)) ↔ (𝑤 ≠ ∅ ∧ ∃𝑡 𝑤 = ({𝑡} × 𝑡))))
1914, 18, 8elab2 3698 . . . . . . . . . 10 (𝑤𝐴 ↔ (𝑤 ≠ ∅ ∧ ∃𝑡 𝑤 = ({𝑡} × 𝑡)))
2019simprbi 496 . . . . . . . . 9 (𝑤𝐴 → ∃𝑡 𝑤 = ({𝑡} × 𝑡))
21 sneq 4658 . . . . . . . . . . . . 13 (𝑡 = 𝑔 → {𝑡} = {𝑔})
2221xpeq1d 5729 . . . . . . . . . . . 12 (𝑡 = 𝑔 → ({𝑡} × 𝑡) = ({𝑔} × 𝑡))
23 xpeq2 5721 . . . . . . . . . . . 12 (𝑡 = 𝑔 → ({𝑔} × 𝑡) = ({𝑔} × 𝑔))
2422, 23eqtrd 2780 . . . . . . . . . . 11 (𝑡 = 𝑔 → ({𝑡} × 𝑡) = ({𝑔} × 𝑔))
2524eqeq2d 2751 . . . . . . . . . 10 (𝑡 = 𝑔 → (𝑤 = ({𝑡} × 𝑡) ↔ 𝑤 = ({𝑔} × 𝑔)))
2625cbvrexvw 3244 . . . . . . . . 9 (∃𝑡 𝑤 = ({𝑡} × 𝑡) ↔ ∃𝑔 𝑤 = ({𝑔} × 𝑔))
2720, 26sylib 218 . . . . . . . 8 (𝑤𝐴 → ∃𝑔 𝑤 = ({𝑔} × 𝑔))
28 eleq2 2833 . . . . . . . . . . . . . . . . . 18 (𝑧 = ({𝑡} × 𝑡) → (𝑥𝑧𝑥 ∈ ({𝑡} × 𝑡)))
29 elxp 5723 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ({𝑡} × 𝑡) ↔ ∃𝑢𝑣(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)))
30 opeq1 4897 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑠 → ⟨𝑢, 𝑣⟩ = ⟨𝑠, 𝑣⟩)
3130eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑠 → (𝑥 = ⟨𝑢, 𝑣⟩ ↔ 𝑥 = ⟨𝑠, 𝑣⟩))
32 eleq1w 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑠 → (𝑢 ∈ {𝑡} ↔ 𝑠 ∈ {𝑡}))
3332anbi1d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑠 → ((𝑢 ∈ {𝑡} ∧ 𝑣𝑡) ↔ (𝑠 ∈ {𝑡} ∧ 𝑣𝑡)))
3431, 33anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑠 → ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ↔ (𝑥 = ⟨𝑠, 𝑣⟩ ∧ (𝑠 ∈ {𝑡} ∧ 𝑣𝑡))))
3534excomimw 2043 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑣(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) → ∃𝑣𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)))
3629, 35sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ({𝑡} × 𝑡) → ∃𝑣𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)))
3728, 36biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝑧 = ({𝑡} × 𝑡) → (𝑥𝑧 → ∃𝑣𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡))))
38 eleq2 2833 . . . . . . . . . . . . . . . . . 18 (𝑤 = ({𝑔} × 𝑔) → (𝑥𝑤𝑥 ∈ ({𝑔} × 𝑔)))
39 elxp 5723 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ({𝑔} × 𝑔) ↔ ∃𝑢𝑦(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)))
40 opeq1 4897 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑠 → ⟨𝑢, 𝑦⟩ = ⟨𝑠, 𝑦⟩)
4140eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑠 → (𝑥 = ⟨𝑢, 𝑦⟩ ↔ 𝑥 = ⟨𝑠, 𝑦⟩))
42 eleq1w 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑠 → (𝑢 ∈ {𝑔} ↔ 𝑠 ∈ {𝑔}))
4342anbi1d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑠 → ((𝑢 ∈ {𝑔} ∧ 𝑦𝑔) ↔ (𝑠 ∈ {𝑔} ∧ 𝑦𝑔)))
4441, 43anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑠 → ((𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)) ↔ (𝑥 = ⟨𝑠, 𝑦⟩ ∧ (𝑠 ∈ {𝑔} ∧ 𝑦𝑔))))
4544excomimw 2043 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑦(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)) → ∃𝑦𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)))
4639, 45sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ({𝑔} × 𝑔) → ∃𝑦𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)))
4738, 46biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝑤 = ({𝑔} × 𝑔) → (𝑥𝑤 → ∃𝑦𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔))))
4837, 47im2anan9 619 . . . . . . . . . . . . . . . 16 ((𝑧 = ({𝑡} × 𝑡) ∧ 𝑤 = ({𝑔} × 𝑔)) → ((𝑥𝑧𝑥𝑤) → (∃𝑣𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ∧ ∃𝑦𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)))))
49 exdistrv 1955 . . . . . . . . . . . . . . . 16 (∃𝑣𝑦(∃𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ∧ ∃𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔))) ↔ (∃𝑣𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ∧ ∃𝑦𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔))))
5048, 49imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝑧 = ({𝑡} × 𝑡) ∧ 𝑤 = ({𝑔} × 𝑔)) → ((𝑥𝑧𝑥𝑤) → ∃𝑣𝑦(∃𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ∧ ∃𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)))))
51 velsn 4664 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ {𝑡} ↔ 𝑢 = 𝑡)
52 opeq1 4897 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑡 → ⟨𝑢, 𝑣⟩ = ⟨𝑡, 𝑣⟩)
5352eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑡 → (𝑥 = ⟨𝑢, 𝑣⟩ ↔ 𝑥 = ⟨𝑡, 𝑣⟩))
5453biimpac 478 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ 𝑢 = 𝑡) → 𝑥 = ⟨𝑡, 𝑣⟩)
5551, 54sylan2b 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ 𝑢 ∈ {𝑡}) → 𝑥 = ⟨𝑡, 𝑣⟩)
5655adantrr 716 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) → 𝑥 = ⟨𝑡, 𝑣⟩)
5756exlimiv 1929 . . . . . . . . . . . . . . . . . 18 (∃𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) → 𝑥 = ⟨𝑡, 𝑣⟩)
58 velsn 4664 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ {𝑔} ↔ 𝑢 = 𝑔)
59 opeq1 4897 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑔 → ⟨𝑢, 𝑦⟩ = ⟨𝑔, 𝑦⟩)
6059eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑔 → (𝑥 = ⟨𝑢, 𝑦⟩ ↔ 𝑥 = ⟨𝑔, 𝑦⟩))
6160biimpac 478 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ⟨𝑢, 𝑦⟩ ∧ 𝑢 = 𝑔) → 𝑥 = ⟨𝑔, 𝑦⟩)
6258, 61sylan2b 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ⟨𝑢, 𝑦⟩ ∧ 𝑢 ∈ {𝑔}) → 𝑥 = ⟨𝑔, 𝑦⟩)
6362adantrr 716 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)) → 𝑥 = ⟨𝑔, 𝑦⟩)
6463exlimiv 1929 . . . . . . . . . . . . . . . . . 18 (∃𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔)) → 𝑥 = ⟨𝑔, 𝑦⟩)
6557, 64sylan9req 2801 . . . . . . . . . . . . . . . . 17 ((∃𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ∧ ∃𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔))) → ⟨𝑡, 𝑣⟩ = ⟨𝑔, 𝑦⟩)
66 vex 3492 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ V
67 vex 3492 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
6866, 67opth1 5495 . . . . . . . . . . . . . . . . 17 (⟨𝑡, 𝑣⟩ = ⟨𝑔, 𝑦⟩ → 𝑡 = 𝑔)
6965, 68syl 17 . . . . . . . . . . . . . . . 16 ((∃𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ∧ ∃𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔))) → 𝑡 = 𝑔)
7069exlimivv 1931 . . . . . . . . . . . . . . 15 (∃𝑣𝑦(∃𝑢(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ {𝑡} ∧ 𝑣𝑡)) ∧ ∃𝑢(𝑥 = ⟨𝑢, 𝑦⟩ ∧ (𝑢 ∈ {𝑔} ∧ 𝑦𝑔))) → 𝑡 = 𝑔)
7150, 70syl6 35 . . . . . . . . . . . . . 14 ((𝑧 = ({𝑡} × 𝑡) ∧ 𝑤 = ({𝑔} × 𝑔)) → ((𝑥𝑧𝑥𝑤) → 𝑡 = 𝑔))
7271, 24syl6 35 . . . . . . . . . . . . 13 ((𝑧 = ({𝑡} × 𝑡) ∧ 𝑤 = ({𝑔} × 𝑔)) → ((𝑥𝑧𝑥𝑤) → ({𝑡} × 𝑡) = ({𝑔} × 𝑔)))
73 eqeq12 2757 . . . . . . . . . . . . 13 ((𝑧 = ({𝑡} × 𝑡) ∧ 𝑤 = ({𝑔} × 𝑔)) → (𝑧 = 𝑤 ↔ ({𝑡} × 𝑡) = ({𝑔} × 𝑔)))
7472, 73sylibrd 259 . . . . . . . . . . . 12 ((𝑧 = ({𝑡} × 𝑡) ∧ 𝑤 = ({𝑔} × 𝑔)) → ((𝑥𝑧𝑥𝑤) → 𝑧 = 𝑤))
7574ex 412 . . . . . . . . . . 11 (𝑧 = ({𝑡} × 𝑡) → (𝑤 = ({𝑔} × 𝑔) → ((𝑥𝑧𝑥𝑤) → 𝑧 = 𝑤)))
7675rexlimivw 3157 . . . . . . . . . 10 (∃𝑡 𝑧 = ({𝑡} × 𝑡) → (𝑤 = ({𝑔} × 𝑔) → ((𝑥𝑧𝑥𝑤) → 𝑧 = 𝑤)))
7776rexlimdvw 3166 . . . . . . . . 9 (∃𝑡 𝑧 = ({𝑡} × 𝑡) → (∃𝑔 𝑤 = ({𝑔} × 𝑔) → ((𝑥𝑧𝑥𝑤) → 𝑧 = 𝑤)))
7877imp 406 . . . . . . . 8 ((∃𝑡 𝑧 = ({𝑡} × 𝑡) ∧ ∃𝑔 𝑤 = ({𝑔} × 𝑔)) → ((𝑥𝑧𝑥𝑤) → 𝑧 = 𝑤))
7913, 27, 78syl2an 595 . . . . . . 7 ((𝑧𝐴𝑤𝐴) → ((𝑥𝑧𝑥𝑤) → 𝑧 = 𝑤))
8011, 79biimtrrid 243 . . . . . 6 ((𝑧𝐴𝑤𝐴) → (¬ (𝑥𝑧 → ¬ 𝑥𝑤) → 𝑧 = 𝑤))
8180necon1ad 2963 . . . . 5 ((𝑧𝐴𝑤𝐴) → (𝑧𝑤 → (𝑥𝑧 → ¬ 𝑥𝑤)))
8281alrimdv 1928 . . . 4 ((𝑧𝐴𝑤𝐴) → (𝑧𝑤 → ∀𝑥(𝑥𝑧 → ¬ 𝑥𝑤)))
83 disj1 4475 . . . 4 ((𝑧𝑤) = ∅ ↔ ∀𝑥(𝑥𝑧 → ¬ 𝑥𝑤))
8482, 83imbitrrdi 252 . . 3 ((𝑧𝐴𝑤𝐴) → (𝑧𝑤 → (𝑧𝑤) = ∅))
8584rgen2 3205 . 2 𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)
86 dfac5lem.2 . . 3 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
87 vex 3492 . . . . . . . 8 ∈ V
88 vuniex 7774 . . . . . . . 8 ∈ V
8987, 88xpex 7788 . . . . . . 7 ( × ) ∈ V
9089pwex 5398 . . . . . 6 𝒫 ( × ) ∈ V
91 snssi 4833 . . . . . . . . . . . 12 (𝑡 → {𝑡} ⊆ )
92 elssuni 4961 . . . . . . . . . . . 12 (𝑡𝑡 )
93 xpss12 5715 . . . . . . . . . . . 12 (({𝑡} ⊆ 𝑡 ) → ({𝑡} × 𝑡) ⊆ ( × ))
9491, 92, 93syl2anc 583 . . . . . . . . . . 11 (𝑡 → ({𝑡} × 𝑡) ⊆ ( × ))
95 vsnex 5449 . . . . . . . . . . . . 13 {𝑡} ∈ V
9695, 66xpex 7788 . . . . . . . . . . . 12 ({𝑡} × 𝑡) ∈ V
9796elpw 4626 . . . . . . . . . . 11 (({𝑡} × 𝑡) ∈ 𝒫 ( × ) ↔ ({𝑡} × 𝑡) ⊆ ( × ))
9894, 97sylibr 234 . . . . . . . . . 10 (𝑡 → ({𝑡} × 𝑡) ∈ 𝒫 ( × ))
99 eleq1 2832 . . . . . . . . . 10 (𝑢 = ({𝑡} × 𝑡) → (𝑢 ∈ 𝒫 ( × ) ↔ ({𝑡} × 𝑡) ∈ 𝒫 ( × )))
10098, 99syl5ibrcom 247 . . . . . . . . 9 (𝑡 → (𝑢 = ({𝑡} × 𝑡) → 𝑢 ∈ 𝒫 ( × )))
101100rexlimiv 3154 . . . . . . . 8 (∃𝑡 𝑢 = ({𝑡} × 𝑡) → 𝑢 ∈ 𝒫 ( × ))
102101adantl 481 . . . . . . 7 ((𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡)) → 𝑢 ∈ 𝒫 ( × ))
103102abssi 4093 . . . . . 6 {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))} ⊆ 𝒫 ( × )
10490, 103ssexi 5340 . . . . 5 {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))} ∈ V
1058, 104eqeltri 2840 . . . 4 𝐴 ∈ V
106 raleq 3331 . . . . . 6 (𝑥 = 𝐴 → (∀𝑧𝑥 𝑧 ≠ ∅ ↔ ∀𝑧𝐴 𝑧 ≠ ∅))
107 raleq 3331 . . . . . . 7 (𝑥 = 𝐴 → (∀𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)))
108107raleqbi1dv 3346 . . . . . 6 (𝑥 = 𝐴 → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)))
109106, 108anbi12d 631 . . . . 5 (𝑥 = 𝐴 → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) ↔ (∀𝑧𝐴 𝑧 ≠ ∅ ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅))))
110 raleq 3331 . . . . . 6 (𝑥 = 𝐴 → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
111110exbidv 1920 . . . . 5 (𝑥 = 𝐴 → (∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
112109, 111imbi12d 344 . . . 4 (𝑥 = 𝐴 → (((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ((∀𝑧𝐴 𝑧 ≠ ∅ ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
113105, 112spcv 3618 . . 3 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → ((∀𝑧𝐴 𝑧 ≠ ∅ ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
11486, 113sylbi 217 . 2 (𝜑 → ((∀𝑧𝐴 𝑧 ≠ ∅ ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
11510, 85, 114mp2ani 697 1 (𝜑 → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cop 4654   cuni 4931   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  dfac5lem5  10196
  Copyright terms: Public domain W3C validator