|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > alcomimw | Structured version Visualization version GIF version | ||
| Description: Weak version of ax-11 2156. See alcomw 2043 for the biconditional form. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| alcomimw.1 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| alcomimw | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alcomimw.1 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvalvw 2034 | . . . 4 ⊢ (∀𝑦𝜑 ↔ ∀𝑧𝜓) | 
| 3 | 2 | biimpi 216 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑧𝜓) | 
| 4 | 3 | alimi 1810 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑧𝜓) | 
| 5 | ax-5 1909 | . 2 ⊢ (∀𝑥∀𝑧𝜓 → ∀𝑦∀𝑥∀𝑧𝜓) | |
| 6 | 1 | biimprd 248 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜓 → 𝜑)) | 
| 7 | 6 | equcoms 2018 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜓 → 𝜑)) | 
| 8 | 7 | spimvw 1994 | . . 3 ⊢ (∀𝑧𝜓 → 𝜑) | 
| 9 | 8 | 2alimi 1811 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧𝜓 → ∀𝑦∀𝑥𝜑) | 
| 10 | 4, 5, 9 | 3syl 18 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: excomimw 2042 alcomw 2043 hbalw 2048 ax11w 2129 bj-ssblem2 36657 | 
| Copyright terms: Public domain | W3C validator |