![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alcomimw | Structured version Visualization version GIF version |
Description: Weak version of ax-11 2158. See alcomw 2044 for the biconditional form. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Dec-2023.) |
Ref | Expression |
---|---|
alcomimw.1 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
alcomimw | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcomimw.1 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvalvw 2035 | . . . 4 ⊢ (∀𝑦𝜑 ↔ ∀𝑧𝜓) |
3 | 2 | biimpi 216 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑧𝜓) |
4 | 3 | alimi 1809 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑧𝜓) |
5 | ax-5 1909 | . 2 ⊢ (∀𝑥∀𝑧𝜓 → ∀𝑦∀𝑥∀𝑧𝜓) | |
6 | 1 | biimprd 248 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜓 → 𝜑)) |
7 | 6 | equcoms 2019 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜓 → 𝜑)) |
8 | 7 | spimvw 1995 | . . 3 ⊢ (∀𝑧𝜓 → 𝜑) |
9 | 8 | 2alimi 1810 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧𝜓 → ∀𝑦∀𝑥𝜑) |
10 | 4, 5, 9 | 3syl 18 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: excomimw 2043 alcomw 2044 hbalw 2049 ax11w 2130 bj-ssblem2 36621 |
Copyright terms: Public domain | W3C validator |