Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exdifsn | Structured version Visualization version GIF version |
Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023.) |
Ref | Expression |
---|---|
exdifsn | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4720 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | 1 | exbii 1850 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) |
3 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∖ cdif 3884 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rex 3070 df-v 3434 df-dif 3890 df-sn 4562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |