| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exdifsn | Structured version Visualization version GIF version | ||
| Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| exdifsn | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4735 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) |
| 3 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∖ cdif 3894 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rex 3057 df-v 3438 df-dif 3900 df-sn 4574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |