| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exdifsn | Structured version Visualization version GIF version | ||
| Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| exdifsn | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4766 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 2 | 1 | exbii 1847 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) |
| 3 | df-rex 3060 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∖ cdif 3928 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rex 3060 df-v 3465 df-dif 3934 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |