Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exdifsn Structured version   Visualization version   GIF version

Theorem exdifsn 34550
Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023.)
Assertion
Ref Expression
exdifsn (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥𝐴 𝑥𝐵)

Proof of Theorem exdifsn
StepHypRef Expression
1 eldifsn 4790 . . 3 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
21exbii 1849 . 2 (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
3 df-rex 3070 . 2 (∃𝑥𝐴 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
42, 3bitr4i 278 1 (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1780  wcel 2105  wne 2939  wrex 3069  cdif 3945  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-rex 3070  df-v 3475  df-dif 3951  df-sn 4629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator