Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exdifsn Structured version   Visualization version   GIF version

Theorem exdifsn 35057
Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023.)
Assertion
Ref Expression
exdifsn (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥𝐴 𝑥𝐵)

Proof of Theorem exdifsn
StepHypRef Expression
1 eldifsn 4811 . . 3 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
21exbii 1846 . 2 (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
3 df-rex 3077 . 2 (∃𝑥𝐴 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
42, 3bitr4i 278 1 (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1777  wcel 2108  wne 2946  wrex 3076  cdif 3973  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rex 3077  df-v 3490  df-dif 3979  df-sn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator