| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exdifsn | Structured version Visualization version GIF version | ||
| Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| exdifsn | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4758 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) |
| 3 | df-rex 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2927 ∃wrex 3055 ∖ cdif 3919 {csn 4597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-rex 3056 df-v 3457 df-dif 3925 df-sn 4598 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |