Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exdifsn Structured version   Visualization version   GIF version

Theorem exdifsn 32953
Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023.)
Assertion
Ref Expression
exdifsn (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥𝐴 𝑥𝐵)

Proof of Theorem exdifsn
StepHypRef Expression
1 eldifsn 4717 . . 3 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
21exbii 1851 . 2 (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
3 df-rex 3069 . 2 (∃𝑥𝐴 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
42, 3bitr4i 277 1 (∃𝑥 𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  wne 2942  wrex 3064  cdif 3880  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rex 3069  df-v 3424  df-dif 3886  df-sn 4559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator