Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1522 Structured version   Visualization version   GIF version

Theorem bnj1522 34381
Description: Well-founded recursion, part 3 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1522.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1522.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1522.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1522.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj1522 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑥,𝐻   𝑅,𝑑,𝑓,𝑥   𝑌,𝑑
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐻(𝑓,𝑑)   𝑌(𝑥,𝑓)

Proof of Theorem bnj1522
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1522.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1522.2 . 2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1522.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1522.4 . 2 𝐹 = 𝐶
5 biid 260 . 2 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
6 biid 260 . 2 (((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ∧ 𝐹𝐻) ↔ ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ∧ 𝐹𝐻))
7 biid 260 . 2 ((((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ∧ 𝐹𝐻) ∧ 𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)) ↔ (((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ∧ 𝐹𝐻) ∧ 𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
8 eqid 2730 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
9 biid 260 . 2 (((((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ∧ 𝐹𝐻) ∧ 𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)) ∧ 𝑦 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)} ∧ ∀𝑧 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)} ¬ 𝑧𝑅𝑦) ↔ ((((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ∧ 𝐹𝐻) ∧ 𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)) ∧ 𝑦 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)} ∧ ∀𝑧 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)} ¬ 𝑧𝑅𝑦))
101, 2, 3, 4, 5, 6, 7, 8, 9bnj1523 34380 1 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  {cab 2707  wne 2938  wral 3059  wrex 3068  {crab 3430  wss 3947  cop 4633   cuni 4907   class class class wbr 5147  cres 5677   Fn wfn 6537  cfv 6542   predc-bnj14 33997   FrSe w-bnj15 34001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-bnj17 33996  df-bnj14 33998  df-bnj13 34000  df-bnj15 34002  df-bnj18 34004  df-bnj19 34006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator