![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > srcmpltd | Structured version Visualization version GIF version |
Description: If a statement is true for every element of a class and for every element of its complement relative to a second class, then it is true for every element in the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
Ref | Expression |
---|---|
srcmpltd.1 | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝜓)) |
srcmpltd.2 | ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∖ 𝐴) → 𝜓)) |
Ref | Expression |
---|---|
srcmpltd | ⊢ (𝜑 → (𝐶 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun2 4196 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 ∪ 𝐵)) | |
2 | undif2 4486 | . . 3 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
3 | 1, 2 | eleqtrrdi 2852 | . 2 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))) |
4 | srcmpltd.1 | . . 3 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝜓)) | |
5 | srcmpltd.2 | . . 3 ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∖ 𝐴) → 𝜓)) | |
6 | elunant 4197 | . . 3 ⊢ ((𝐶 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) → 𝜓) ↔ ((𝐶 ∈ 𝐴 → 𝜓) ∧ (𝐶 ∈ (𝐵 ∖ 𝐴) → 𝜓))) | |
7 | 4, 5, 6 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) → 𝜓)) |
8 | 3, 7 | syl5 34 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3963 ∪ cun 3964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 |
This theorem is referenced by: prsrcmpltd 35088 |
Copyright terms: Public domain | W3C validator |