| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > srcmpltd | Structured version Visualization version GIF version | ||
| Description: If a statement is true for every element of a class and for every element of its complement relative to a second class, then it is true for every element in the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| srcmpltd.1 | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝜓)) |
| srcmpltd.2 | ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∖ 𝐴) → 𝜓)) |
| Ref | Expression |
|---|---|
| srcmpltd | ⊢ (𝜑 → (𝐶 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun2 4133 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 ∪ 𝐵)) | |
| 2 | undif2 4427 | . . 3 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
| 3 | 1, 2 | eleqtrrdi 2842 | . 2 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))) |
| 4 | srcmpltd.1 | . . 3 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝜓)) | |
| 5 | srcmpltd.2 | . . 3 ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∖ 𝐴) → 𝜓)) | |
| 6 | elunant 4134 | . . 3 ⊢ ((𝐶 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) → 𝜓) ↔ ((𝐶 ∈ 𝐴 → 𝜓) ∧ (𝐶 ∈ (𝐵 ∖ 𝐴) → 𝜓))) | |
| 7 | 4, 5, 6 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) → 𝜓)) |
| 8 | 3, 7 | syl5 34 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∖ cdif 3899 ∪ cun 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: prsrcmpltd 35088 |
| Copyright terms: Public domain | W3C validator |