Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srcmpltd Structured version   Visualization version   GIF version

Theorem srcmpltd 35078
Description: If a statement is true for every element of a class and for every element of its complement relative to a second class, then it is true for every element in the second class. (Contributed by BTernaryTau, 27-Sep-2023.)
Hypotheses
Ref Expression
srcmpltd.1 (𝜑 → (𝐶𝐴𝜓))
srcmpltd.2 (𝜑 → (𝐶 ∈ (𝐵𝐴) → 𝜓))
Assertion
Ref Expression
srcmpltd (𝜑 → (𝐶𝐵𝜓))

Proof of Theorem srcmpltd
StepHypRef Expression
1 elun2 4154 . . 3 (𝐶𝐵𝐶 ∈ (𝐴𝐵))
2 undif2 4448 . . 3 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
31, 2eleqtrrdi 2840 . 2 (𝐶𝐵𝐶 ∈ (𝐴 ∪ (𝐵𝐴)))
4 srcmpltd.1 . . 3 (𝜑 → (𝐶𝐴𝜓))
5 srcmpltd.2 . . 3 (𝜑 → (𝐶 ∈ (𝐵𝐴) → 𝜓))
6 elunant 4155 . . 3 ((𝐶 ∈ (𝐴 ∪ (𝐵𝐴)) → 𝜓) ↔ ((𝐶𝐴𝜓) ∧ (𝐶 ∈ (𝐵𝐴) → 𝜓)))
74, 5, 6sylanbrc 583 . 2 (𝜑 → (𝐶 ∈ (𝐴 ∪ (𝐵𝐴)) → 𝜓))
83, 7syl5 34 1 (𝜑 → (𝐶𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3919  cun 3920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305
This theorem is referenced by:  prsrcmpltd  35079
  Copyright terms: Public domain W3C validator