Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
con2d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
con2d | ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotr 130 | . . 3 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
2 | con2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
3 | 1, 2 | syl5 34 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → ¬ 𝜒)) |
4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
Copyright terms: Public domain | W3C validator |