| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
| 3 | 2 | eximi 1835 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2mo 2647 2eu6 2656 cgsex2g 3506 cgsex4g 3507 cgsex4gOLD 3508 dtruALT2 5340 exexneq 5409 dtruOLD 5416 mosubopt 5485 elopaelxpOLD 5745 ssrel 5761 ssrelOLD 5762 relopabi 5801 xpdifid 6157 ssoprab2i 7518 hash1to3 14510 catcone0 17699 isfunc 17877 umgr3v3e3cycl 30165 frgrconngr 30275 bnj605 34938 bnj607 34947 bnj916 34964 bnj996 34987 bnj907 34998 bnj1128 35021 funen1cnv 35119 cusgr3cyclex 35158 acycgrislfgr 35174 umgracycusgr 35176 cusgracyclt3v 35178 ac6s6f 38197 mnringmulrcld 44252 2uasbanh 44586 2uasbanhVD 44935 elsprel 47489 sprssspr 47495 2exopprim 47539 reuopreuprim 47540 |
| Copyright terms: Public domain | W3C validator |