MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eximi Structured version   Visualization version   GIF version

Theorem 2eximi 1839
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1838 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1838 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  2mo  2650  2eu6  2658  cgsex2g  3465  cgsex4g  3466  cgsex4gOLD  3467  dtru  5288  mosubopt  5418  elopaelxp  5667  ssrel  5683  relopabi  5721  xpdifid  6060  ssoprab2i  7363  hash1to3  14133  catcone0  17313  isfunc  17495  umgr3v3e3cycl  28449  frgrconngr  28559  bnj605  32787  bnj607  32796  bnj916  32813  bnj996  32836  bnj907  32847  bnj1128  32870  funen1cnv  32960  cusgr3cyclex  32998  acycgrislfgr  33014  umgracycusgr  33016  cusgracyclt3v  33018  bj-dtru  34926  ac6s6f  36258  sn-dtru  40116  mnringmulrcld  41735  2uasbanh  42070  2uasbanhVD  42420  elsprel  44815  sprssspr  44821  2exopprim  44865  reuopreuprim  44866
  Copyright terms: Public domain W3C validator