MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eximi Structured version   Visualization version   GIF version

Theorem 2eximi 1837
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1836 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1836 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  2mo  2642  2eu6  2651  cgsex2g  3480  cgsex4g  3481  cgsex4gOLD  3482  dtruALT2  5306  exexneq  5375  mosubopt  5448  ssrel  5721  relopabi  5760  xpdifid  6112  ssoprab2i  7452  hash1to3  14391  catcone0  17585  isfunc  17763  umgr3v3e3cycl  30154  frgrconngr  30264  bnj605  34909  bnj607  34918  bnj916  34935  bnj996  34958  bnj907  34969  bnj1128  34992  funen1cnv  35090  cusgr3cyclex  35148  acycgrislfgr  35164  umgracycusgr  35166  cusgracyclt3v  35168  ac6s6f  38192  mnringmulrcld  44240  2uasbanh  44573  2uasbanhVD  44922  elsprel  47485  sprssspr  47491  2exopprim  47535  reuopreuprim  47536
  Copyright terms: Public domain W3C validator