Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1837 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1837 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 2mo 2650 2eu6 2658 cgsex2g 3475 cgsex4g 3476 cgsex4gOLD 3477 dtruALT2 5293 dtru 5359 mosubopt 5424 elopaelxpOLD 5677 ssrel 5693 ssrelOLD 5694 relopabi 5732 xpdifid 6071 ssoprab2i 7385 hash1to3 14205 catcone0 17396 isfunc 17579 umgr3v3e3cycl 28548 frgrconngr 28658 bnj605 32887 bnj607 32896 bnj916 32913 bnj996 32936 bnj907 32947 bnj1128 32970 funen1cnv 33060 cusgr3cyclex 33098 acycgrislfgr 33114 umgracycusgr 33116 cusgracyclt3v 33118 bj-dtru 34999 ac6s6f 36331 sn-dtru 40188 mnringmulrcld 41846 2uasbanh 42181 2uasbanhVD 42531 elsprel 44927 sprssspr 44933 2exopprim 44977 reuopreuprim 44978 |
Copyright terms: Public domain | W3C validator |