| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | eximi 1836 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
| 3 | 2 | eximi 1836 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2mo 2642 2eu6 2651 cgsex2g 3480 cgsex4g 3481 cgsex4gOLD 3482 dtruALT2 5306 exexneq 5375 mosubopt 5448 ssrel 5721 relopabi 5760 xpdifid 6112 ssoprab2i 7452 hash1to3 14391 catcone0 17585 isfunc 17763 umgr3v3e3cycl 30154 frgrconngr 30264 bnj605 34909 bnj607 34918 bnj916 34935 bnj996 34958 bnj907 34969 bnj1128 34992 funen1cnv 35090 cusgr3cyclex 35148 acycgrislfgr 35164 umgracycusgr 35166 cusgracyclt3v 35168 ac6s6f 38192 mnringmulrcld 44240 2uasbanh 44573 2uasbanhVD 44922 elsprel 47485 sprssspr 47491 2exopprim 47535 reuopreuprim 47536 |
| Copyright terms: Public domain | W3C validator |