| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | eximi 1836 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
| 3 | 2 | eximi 1836 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2mo 2643 2eu6 2652 cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 dtruALT2 5310 exexneq 5379 mosubopt 5453 ssrel 5727 relopabi 5767 xpdifid 6121 ssoprab2i 7463 hash1to3 14405 catcone0 17599 isfunc 17777 umgr3v3e3cycl 30171 frgrconngr 30281 bnj605 34926 bnj607 34935 bnj916 34952 bnj996 34975 bnj907 34986 bnj1128 35009 funen1cnv 35107 cusgr3cyclex 35187 acycgrislfgr 35203 umgracycusgr 35205 cusgracyclt3v 35207 ac6s6f 38219 mnringmulrcld 44326 2uasbanh 44659 2uasbanhVD 45008 elsprel 47580 sprssspr 47586 2exopprim 47630 reuopreuprim 47631 |
| Copyright terms: Public domain | W3C validator |