MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eximi Structured version   Visualization version   GIF version

Theorem 2eximi 1837
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1836 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1836 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 206  df-ex 1781
This theorem is referenced by:  2mo  2648  2eu6  2656  cgsex2g  3484  cgsex4g  3485  cgsex4gOLD  3486  dtruALT2  5310  exexneq  5376  dtruOLD  5383  mosubopt  5448  elopaelxpOLD  5702  ssrel  5718  ssrelOLD  5719  relopabi  5758  xpdifid  6100  ssoprab2i  7439  hash1to3  14297  catcone0  17485  isfunc  17668  umgr3v3e3cycl  28777  frgrconngr  28887  bnj605  33127  bnj607  33136  bnj916  33153  bnj996  33176  bnj907  33187  bnj1128  33210  funen1cnv  33300  cusgr3cyclex  33338  acycgrislfgr  33354  umgracycusgr  33356  cusgracyclt3v  33358  ac6s6f  36429  mnringmulrcld  42156  2uasbanh  42491  2uasbanhVD  42841  elsprel  45267  sprssspr  45273  2exopprim  45317  reuopreuprim  45318
  Copyright terms: Public domain W3C validator