![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1832 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1832 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 2mo 2646 2eu6 2655 cgsex2g 3525 cgsex4g 3526 cgsex4gOLD 3527 dtruALT2 5376 exexneq 5445 dtruOLD 5452 mosubopt 5520 elopaelxpOLD 5779 ssrel 5795 ssrelOLD 5796 relopabi 5835 xpdifid 6190 ssoprab2i 7544 hash1to3 14528 catcone0 17732 isfunc 17915 umgr3v3e3cycl 30213 frgrconngr 30323 bnj605 34900 bnj607 34909 bnj916 34926 bnj996 34949 bnj907 34960 bnj1128 34983 funen1cnv 35081 cusgr3cyclex 35121 acycgrislfgr 35137 umgracycusgr 35139 cusgracyclt3v 35141 ac6s6f 38160 mnringmulrcld 44224 2uasbanh 44559 2uasbanhVD 44909 elsprel 47400 sprssspr 47406 2exopprim 47450 reuopreuprim 47451 |
Copyright terms: Public domain | W3C validator |