![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1833 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1833 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 2mo 2651 2eu6 2660 cgsex2g 3537 cgsex4g 3538 cgsex4gOLD 3539 dtruALT2 5388 exexneq 5454 dtruOLD 5461 mosubopt 5529 elopaelxpOLD 5790 ssrel 5806 ssrelOLD 5807 relopabi 5846 xpdifid 6199 ssoprab2i 7561 hash1to3 14541 catcone0 17745 isfunc 17928 umgr3v3e3cycl 30216 frgrconngr 30326 bnj605 34883 bnj607 34892 bnj916 34909 bnj996 34932 bnj907 34943 bnj1128 34966 funen1cnv 35064 cusgr3cyclex 35104 acycgrislfgr 35120 umgracycusgr 35122 cusgracyclt3v 35124 ac6s6f 38133 mnringmulrcld 44197 2uasbanh 44532 2uasbanhVD 44882 elsprel 47349 sprssspr 47355 2exopprim 47399 reuopreuprim 47400 |
Copyright terms: Public domain | W3C validator |