| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
| 3 | 2 | eximi 1835 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2mo 2641 2eu6 2650 cgsex2g 3484 cgsex4g 3485 cgsex4gOLD 3486 dtruALT2 5312 exexneq 5381 dtruOLD 5388 mosubopt 5457 ssrel 5730 relopabi 5769 xpdifid 6121 ssoprab2i 7464 hash1to3 14417 catcone0 17611 isfunc 17789 umgr3v3e3cycl 30146 frgrconngr 30256 bnj605 34873 bnj607 34882 bnj916 34899 bnj996 34922 bnj907 34933 bnj1128 34956 funen1cnv 35054 cusgr3cyclex 35108 acycgrislfgr 35124 umgracycusgr 35126 cusgracyclt3v 35128 ac6s6f 38152 mnringmulrcld 44201 2uasbanh 44535 2uasbanhVD 44884 elsprel 47460 sprssspr 47466 2exopprim 47510 reuopreuprim 47511 |
| Copyright terms: Public domain | W3C validator |