| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
| 3 | 2 | eximi 1835 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2mo 2642 2eu6 2651 cgsex2g 3496 cgsex4g 3497 cgsex4gOLD 3498 dtruALT2 5327 exexneq 5396 dtruOLD 5403 mosubopt 5472 elopaelxpOLD 5731 ssrel 5747 ssrelOLD 5748 relopabi 5787 xpdifid 6143 ssoprab2i 7502 hash1to3 14463 catcone0 17654 isfunc 17832 umgr3v3e3cycl 30119 frgrconngr 30229 bnj605 34903 bnj607 34912 bnj916 34929 bnj996 34952 bnj907 34963 bnj1128 34986 funen1cnv 35084 cusgr3cyclex 35123 acycgrislfgr 35139 umgracycusgr 35141 cusgracyclt3v 35143 ac6s6f 38162 mnringmulrcld 44210 2uasbanh 44544 2uasbanhVD 44893 elsprel 47466 sprssspr 47472 2exopprim 47516 reuopreuprim 47517 |
| Copyright terms: Public domain | W3C validator |