Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1838 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1838 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 2mo 2650 2eu6 2658 cgsex2g 3465 cgsex4g 3466 cgsex4gOLD 3467 dtru 5288 mosubopt 5418 elopaelxp 5667 ssrel 5683 relopabi 5721 xpdifid 6060 ssoprab2i 7363 hash1to3 14133 catcone0 17313 isfunc 17495 umgr3v3e3cycl 28449 frgrconngr 28559 bnj605 32787 bnj607 32796 bnj916 32813 bnj996 32836 bnj907 32847 bnj1128 32870 funen1cnv 32960 cusgr3cyclex 32998 acycgrislfgr 33014 umgracycusgr 33016 cusgracyclt3v 33018 bj-dtru 34926 ac6s6f 36258 sn-dtru 40116 mnringmulrcld 41735 2uasbanh 42070 2uasbanhVD 42420 elsprel 44815 sprssspr 44821 2exopprim 44865 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |