MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eximi Structured version   Visualization version   GIF version

Theorem 2eximi 1834
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1833 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1833 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  2mo  2651  2eu6  2660  cgsex2g  3537  cgsex4g  3538  cgsex4gOLD  3539  dtruALT2  5388  exexneq  5454  dtruOLD  5461  mosubopt  5529  elopaelxpOLD  5790  ssrel  5806  ssrelOLD  5807  relopabi  5846  xpdifid  6199  ssoprab2i  7561  hash1to3  14541  catcone0  17745  isfunc  17928  umgr3v3e3cycl  30216  frgrconngr  30326  bnj605  34883  bnj607  34892  bnj916  34909  bnj996  34932  bnj907  34943  bnj1128  34966  funen1cnv  35064  cusgr3cyclex  35104  acycgrislfgr  35120  umgracycusgr  35122  cusgracyclt3v  35124  ac6s6f  38133  mnringmulrcld  44197  2uasbanh  44532  2uasbanhVD  44882  elsprel  47349  sprssspr  47355  2exopprim  47399  reuopreuprim  47400
  Copyright terms: Public domain W3C validator