![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1835 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: 2mo 2642 2eu6 2650 cgsex2g 3518 cgsex4g 3519 cgsex4gOLD 3520 cgsex4gOLDOLD 3521 dtruALT2 5369 exexneq 5435 dtruOLD 5442 mosubopt 5511 elopaelxpOLD 5767 ssrel 5783 ssrelOLD 5784 relopabi 5823 xpdifid 6168 ssoprab2i 7523 hash1to3 14458 catcone0 17637 isfunc 17820 umgr3v3e3cycl 29702 frgrconngr 29812 bnj605 34214 bnj607 34223 bnj916 34240 bnj996 34263 bnj907 34274 bnj1128 34297 funen1cnv 34387 cusgr3cyclex 34423 acycgrislfgr 34439 umgracycusgr 34441 cusgracyclt3v 34443 ac6s6f 37346 mnringmulrcld 43291 2uasbanh 43626 2uasbanhVD 43976 elsprel 46443 sprssspr 46449 2exopprim 46493 reuopreuprim 46494 |
Copyright terms: Public domain | W3C validator |