![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1838 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1838 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 2mo 2645 2eu6 2653 cgsex2g 3520 cgsex4g 3521 cgsex4gOLD 3522 cgsex4gOLDOLD 3523 dtruALT2 5369 exexneq 5435 dtruOLD 5442 mosubopt 5511 elopaelxpOLD 5767 ssrel 5783 ssrelOLD 5784 relopabi 5823 xpdifid 6168 ssoprab2i 7519 hash1to3 14452 catcone0 17631 isfunc 17814 umgr3v3e3cycl 29468 frgrconngr 29578 bnj605 33949 bnj607 33958 bnj916 33975 bnj996 33998 bnj907 34009 bnj1128 34032 funen1cnv 34122 cusgr3cyclex 34158 acycgrislfgr 34174 umgracycusgr 34176 cusgracyclt3v 34178 ac6s6f 37089 mnringmulrcld 43035 2uasbanh 43370 2uasbanhVD 43720 elsprel 46191 sprssspr 46197 2exopprim 46241 reuopreuprim 46242 |
Copyright terms: Public domain | W3C validator |