Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1836 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1836 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-ex 1781 |
This theorem is referenced by: 2mo 2648 2eu6 2656 cgsex2g 3484 cgsex4g 3485 cgsex4gOLD 3486 dtruALT2 5310 exexneq 5376 dtruOLD 5383 mosubopt 5448 elopaelxpOLD 5702 ssrel 5718 ssrelOLD 5719 relopabi 5758 xpdifid 6100 ssoprab2i 7439 hash1to3 14297 catcone0 17485 isfunc 17668 umgr3v3e3cycl 28777 frgrconngr 28887 bnj605 33127 bnj607 33136 bnj916 33153 bnj996 33176 bnj907 33187 bnj1128 33210 funen1cnv 33300 cusgr3cyclex 33338 acycgrislfgr 33354 umgracycusgr 33356 cusgracyclt3v 33358 ac6s6f 36429 mnringmulrcld 42156 2uasbanh 42491 2uasbanhVD 42841 elsprel 45267 sprssspr 45273 2exopprim 45317 reuopreuprim 45318 |
Copyright terms: Public domain | W3C validator |