| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
| 3 | 2 | eximi 1835 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2mo 2641 2eu6 2650 cgsex2g 3493 cgsex4g 3494 cgsex4gOLD 3495 dtruALT2 5325 exexneq 5394 dtruOLD 5401 mosubopt 5470 elopaelxpOLD 5729 ssrel 5745 ssrelOLD 5746 relopabi 5785 xpdifid 6141 ssoprab2i 7500 hash1to3 14457 catcone0 17648 isfunc 17826 umgr3v3e3cycl 30113 frgrconngr 30223 bnj605 34897 bnj607 34906 bnj916 34923 bnj996 34946 bnj907 34957 bnj1128 34980 funen1cnv 35078 cusgr3cyclex 35123 acycgrislfgr 35139 umgracycusgr 35141 cusgracyclt3v 35143 ac6s6f 38167 mnringmulrcld 44217 2uasbanh 44551 2uasbanhVD 44900 elsprel 47476 sprssspr 47482 2exopprim 47526 reuopreuprim 47527 |
| Copyright terms: Public domain | W3C validator |