MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exists1 Structured version   Visualization version   GIF version

Theorem exists1 2693
Description: Two ways to express "exactly one thing exists". The left-hand side requires only one variable to express this. Both sides are false in set theory, see theorem dtru 5125. (Contributed by NM, 5-Apr-2004.) (Proof shortened by BJ, 7-Oct-2022.)
Assertion
Ref Expression
exists1 (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem exists1
StepHypRef Expression
1 equid 1969 . . . 4 𝑥 = 𝑥
21bitru 1516 . . 3 (𝑥 = 𝑥 ↔ ⊤)
32eubii 2603 . 2 (∃!𝑥 𝑥 = 𝑥 ↔ ∃!𝑥⊤)
4 euae 2691 . 2 (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦)
53, 4bitri 267 1 (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wal 1505  wtru 1508  ∃!weu 2582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965
This theorem depends on definitions:  df-bi 199  df-an 388  df-tru 1510  df-ex 1743  df-mo 2547  df-eu 2583
This theorem is referenced by:  exists2  2694  exists2OLD  2695
  Copyright terms: Public domain W3C validator