Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem54 Structured version   Visualization version   GIF version

Theorem stoweidlem54 46052
Description: There exists a function 𝑥 as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem54.1 𝑖𝜑
stoweidlem54.2 𝑡𝜑
stoweidlem54.3 𝑦𝜑
stoweidlem54.4 𝑤𝜑
stoweidlem54.5 𝑇 = 𝐽
stoweidlem54.6 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem54.7 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem54.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
stoweidlem54.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem54.10 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem54.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem54.12 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem54.13 (𝜑𝑀 ∈ ℕ)
stoweidlem54.14 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem54.15 (𝜑𝐵𝑇)
stoweidlem54.16 (𝜑𝐷 ran 𝑊)
stoweidlem54.17 (𝜑𝐷𝑇)
stoweidlem54.18 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
stoweidlem54.19 (𝜑𝑇 ∈ V)
stoweidlem54.20 (𝜑𝐸 ∈ ℝ+)
stoweidlem54.21 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem54 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑖,𝑡,𝑦,𝑇   𝐴,𝑓,𝑔,,𝑡,𝑦   𝐵,𝑓,𝑔,𝑖,𝑦   𝑓,𝐸,𝑔,𝑖,𝑦   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔,,𝑖,𝑡   𝑓,𝑊,𝑔,𝑖   𝑓,𝑌,𝑔,𝑖   𝜑,𝑓,𝑔   𝑤,𝑖,𝑡,𝑦,𝑇   𝐷,𝑖,𝑦   𝑥,𝑡,𝑦,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝑀   𝑤,𝑊   𝑤,𝑌   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑀   𝑥,𝑃   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐴(𝑤,𝑒,𝑖)   𝐵(𝑡,𝑒,)   𝐷(𝑤,𝑡,𝑒,𝑓,𝑔,)   𝑃(𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑇(𝑒)   𝑈(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑒,)   𝐹(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐽(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑀(𝑦,𝑒)   𝑉(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑦,𝑡,𝑒,)   𝑌(𝑥,𝑦,𝑡,𝑒,)   𝑍(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem54
StepHypRef Expression
1 stoweidlem54.3 . . 3 𝑦𝜑
2 nfv 1914 . . 3 𝑦𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
3 stoweidlem54.18 . . 3 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
4 stoweidlem54.1 . . . . 5 𝑖𝜑
5 nfv 1914 . . . . . 6 𝑖 𝑦:(1...𝑀)⟶𝑌
6 nfra1 3261 . . . . . 6 𝑖𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
75, 6nfan 1899 . . . . 5 𝑖(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
84, 7nfan 1899 . . . 4 𝑖(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
9 stoweidlem54.2 . . . . 5 𝑡𝜑
10 nfcv 2891 . . . . . . 7 𝑡𝑦
11 nfcv 2891 . . . . . . 7 𝑡(1...𝑀)
12 stoweidlem54.6 . . . . . . . 8 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
13 nfra1 3261 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
14 nfcv 2891 . . . . . . . . 9 𝑡𝐴
1513, 14nfrabw 3443 . . . . . . . 8 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
1612, 15nfcxfr 2889 . . . . . . 7 𝑡𝑌
1710, 11, 16nff 6684 . . . . . 6 𝑡 𝑦:(1...𝑀)⟶𝑌
18 nfra1 3261 . . . . . . . 8 𝑡𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀)
19 nfra1 3261 . . . . . . . 8 𝑡𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)
2018, 19nfan 1899 . . . . . . 7 𝑡(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2111, 20nfralw 3285 . . . . . 6 𝑡𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2217, 21nfan 1899 . . . . 5 𝑡(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
239, 22nfan 1899 . . . 4 𝑡(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
24 stoweidlem54.4 . . . . 5 𝑤𝜑
25 nfv 1914 . . . . 5 𝑤(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
2624, 25nfan 1899 . . . 4 𝑤(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
27 stoweidlem54.10 . . . . 5 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
28 nfrab1 3426 . . . . 5 𝑤{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
2927, 28nfcxfr 2889 . . . 4 𝑤𝑉
30 stoweidlem54.7 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
31 eqid 2729 . . . 4 (seq1(𝑃, 𝑦)‘𝑀) = (seq1(𝑃, 𝑦)‘𝑀)
32 stoweidlem54.8 . . . 4 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
33 stoweidlem54.9 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
34 stoweidlem54.13 . . . . 5 (𝜑𝑀 ∈ ℕ)
3534adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑀 ∈ ℕ)
36 stoweidlem54.14 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑊:(1...𝑀)⟶𝑉)
38 simprl 770 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑦:(1...𝑀)⟶𝑌)
39 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑉)
4027reqabi 3429 . . . . . 6 (𝑤𝑉 ↔ (𝑤𝐽 ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
4140simplbi 497 . . . . 5 (𝑤𝑉𝑤𝐽)
42 elssuni 4901 . . . . . 6 (𝑤𝐽𝑤 𝐽)
43 stoweidlem54.5 . . . . . 6 𝑇 = 𝐽
4442, 43sseqtrrdi 3988 . . . . 5 (𝑤𝐽𝑤𝑇)
4539, 41, 443syl 18 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑇)
46 stoweidlem54.16 . . . . 5 (𝜑𝐷 ran 𝑊)
4746adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷 ran 𝑊)
48 stoweidlem54.17 . . . . 5 (𝜑𝐷𝑇)
4948adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷𝑇)
50 stoweidlem54.15 . . . . 5 (𝜑𝐵𝑇)
5150adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐵𝑇)
52 r19.26 3091 . . . . . . 7 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) ↔ (∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
5352simplbi 497 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5453ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5554r19.21bi 3229 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5652simprbi 496 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5756ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5857r19.21bi 3229 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
59 stoweidlem54.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
60593adant1r 1178 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
61 stoweidlem54.12 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
6261adantlr 715 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
63 stoweidlem54.19 . . . . 5 (𝜑𝑇 ∈ V)
6463adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑇 ∈ V)
65 stoweidlem54.20 . . . . 5 (𝜑𝐸 ∈ ℝ+)
6665adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 ∈ ℝ+)
67 stoweidlem54.21 . . . . 5 (𝜑𝐸 < (1 / 3))
6867adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 < (1 / 3))
698, 23, 26, 29, 12, 30, 31, 32, 33, 35, 37, 38, 45, 47, 49, 51, 55, 58, 60, 62, 64, 66, 68stoweidlem51 46049 . . 3 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
701, 2, 3, 69exlimdd 2221 . 2 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
71 df-rex 3054 . 2 (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
7270, 71sylibr 234 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  wss 3914   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  3c3 12242  +crp 12951  ...cfz 13468  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027
This theorem is referenced by:  stoweidlem57  46055
  Copyright terms: Public domain W3C validator