Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem54 Structured version   Visualization version   GIF version

Theorem stoweidlem54 42693
 Description: There exists a function 𝑥 as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem54.1 𝑖𝜑
stoweidlem54.2 𝑡𝜑
stoweidlem54.3 𝑦𝜑
stoweidlem54.4 𝑤𝜑
stoweidlem54.5 𝑇 = 𝐽
stoweidlem54.6 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem54.7 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem54.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
stoweidlem54.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem54.10 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem54.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem54.12 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem54.13 (𝜑𝑀 ∈ ℕ)
stoweidlem54.14 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem54.15 (𝜑𝐵𝑇)
stoweidlem54.16 (𝜑𝐷 ran 𝑊)
stoweidlem54.17 (𝜑𝐷𝑇)
stoweidlem54.18 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
stoweidlem54.19 (𝜑𝑇 ∈ V)
stoweidlem54.20 (𝜑𝐸 ∈ ℝ+)
stoweidlem54.21 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem54 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑖,𝑡,𝑦,𝑇   𝐴,𝑓,𝑔,,𝑡,𝑦   𝐵,𝑓,𝑔,𝑖,𝑦   𝑓,𝐸,𝑔,𝑖,𝑦   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔,,𝑖,𝑡   𝑓,𝑊,𝑔,𝑖   𝑓,𝑌,𝑔,𝑖   𝜑,𝑓,𝑔   𝑤,𝑖,𝑡,𝑦,𝑇   𝐷,𝑖,𝑦   𝑥,𝑡,𝑦,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝑀   𝑤,𝑊   𝑤,𝑌   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑀   𝑥,𝑃   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐴(𝑤,𝑒,𝑖)   𝐵(𝑡,𝑒,)   𝐷(𝑤,𝑡,𝑒,𝑓,𝑔,)   𝑃(𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑇(𝑒)   𝑈(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑒,)   𝐹(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐽(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑀(𝑦,𝑒)   𝑉(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑦,𝑡,𝑒,)   𝑌(𝑥,𝑦,𝑡,𝑒,)   𝑍(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem54
StepHypRef Expression
1 stoweidlem54.3 . . 3 𝑦𝜑
2 nfv 1915 . . 3 𝑦𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
3 stoweidlem54.18 . . 3 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
4 stoweidlem54.1 . . . . 5 𝑖𝜑
5 nfv 1915 . . . . . 6 𝑖 𝑦:(1...𝑀)⟶𝑌
6 nfra1 3186 . . . . . 6 𝑖𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
75, 6nfan 1900 . . . . 5 𝑖(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
84, 7nfan 1900 . . . 4 𝑖(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
9 stoweidlem54.2 . . . . 5 𝑡𝜑
10 nfcv 2958 . . . . . . 7 𝑡𝑦
11 nfcv 2958 . . . . . . 7 𝑡(1...𝑀)
12 stoweidlem54.6 . . . . . . . 8 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
13 nfra1 3186 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
14 nfcv 2958 . . . . . . . . 9 𝑡𝐴
1513, 14nfrabw 3341 . . . . . . . 8 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
1612, 15nfcxfr 2956 . . . . . . 7 𝑡𝑌
1710, 11, 16nff 6487 . . . . . 6 𝑡 𝑦:(1...𝑀)⟶𝑌
18 nfra1 3186 . . . . . . . 8 𝑡𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀)
19 nfra1 3186 . . . . . . . 8 𝑡𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)
2018, 19nfan 1900 . . . . . . 7 𝑡(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2111, 20nfralw 3192 . . . . . 6 𝑡𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2217, 21nfan 1900 . . . . 5 𝑡(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
239, 22nfan 1900 . . . 4 𝑡(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
24 stoweidlem54.4 . . . . 5 𝑤𝜑
25 nfv 1915 . . . . 5 𝑤(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
2624, 25nfan 1900 . . . 4 𝑤(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
27 stoweidlem54.10 . . . . 5 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
28 nfrab1 3340 . . . . 5 𝑤{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
2927, 28nfcxfr 2956 . . . 4 𝑤𝑉
30 stoweidlem54.7 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
31 eqid 2801 . . . 4 (seq1(𝑃, 𝑦)‘𝑀) = (seq1(𝑃, 𝑦)‘𝑀)
32 stoweidlem54.8 . . . 4 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
33 stoweidlem54.9 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
34 stoweidlem54.13 . . . . 5 (𝜑𝑀 ∈ ℕ)
3534adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑀 ∈ ℕ)
36 stoweidlem54.14 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
3736adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑊:(1...𝑀)⟶𝑉)
38 simprl 770 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑦:(1...𝑀)⟶𝑌)
39 simpr 488 . . . . 5 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑉)
4027rabeq2i 3438 . . . . . 6 (𝑤𝑉 ↔ (𝑤𝐽 ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
4140simplbi 501 . . . . 5 (𝑤𝑉𝑤𝐽)
42 elssuni 4833 . . . . . 6 (𝑤𝐽𝑤 𝐽)
43 stoweidlem54.5 . . . . . 6 𝑇 = 𝐽
4442, 43sseqtrrdi 3969 . . . . 5 (𝑤𝐽𝑤𝑇)
4539, 41, 443syl 18 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑇)
46 stoweidlem54.16 . . . . 5 (𝜑𝐷 ran 𝑊)
4746adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷 ran 𝑊)
48 stoweidlem54.17 . . . . 5 (𝜑𝐷𝑇)
4948adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷𝑇)
50 stoweidlem54.15 . . . . 5 (𝜑𝐵𝑇)
5150adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐵𝑇)
52 r19.26 3140 . . . . . . 7 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) ↔ (∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
5352simplbi 501 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5453ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5554r19.21bi 3176 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5652simprbi 500 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5756ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5857r19.21bi 3176 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
59 stoweidlem54.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
60593adant1r 1174 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
61 stoweidlem54.12 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
6261adantlr 714 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
63 stoweidlem54.19 . . . . 5 (𝜑𝑇 ∈ V)
6463adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑇 ∈ V)
65 stoweidlem54.20 . . . . 5 (𝜑𝐸 ∈ ℝ+)
6665adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 ∈ ℝ+)
67 stoweidlem54.21 . . . . 5 (𝜑𝐸 < (1 / 3))
6867adantr 484 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 < (1 / 3))
698, 23, 26, 29, 12, 30, 31, 32, 33, 35, 37, 38, 45, 47, 49, 51, 55, 58, 60, 62, 64, 66, 68stoweidlem51 42690 . . 3 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
701, 2, 3, 69exlimdd 2219 . 2 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
71 df-rex 3115 . 2 (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
7270, 71sylibr 237 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781  Ⅎwnf 1785   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  {crab 3113  Vcvv 3444   ∖ cdif 3881   ⊆ wss 3884  ∪ cuni 4803   class class class wbr 5033   ↦ cmpt 5113  ran crn 5524  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  ℝcr 10529  0cc0 10530  1c1 10531   · cmul 10535   < clt 10668   ≤ cle 10669   − cmin 10863   / cdiv 11290  ℕcn 11629  3c3 11685  ℝ+crp 12381  ...cfz 12889  seqcseq 13368 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430 This theorem is referenced by:  stoweidlem57  42696
 Copyright terms: Public domain W3C validator