Proof of Theorem stoweidlem54
Step | Hyp | Ref
| Expression |
1 | | stoweidlem54.3 |
. . 3
⊢
Ⅎ𝑦𝜑 |
2 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
3 | | stoweidlem54.18 |
. . 3
⊢ (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) |
4 | | stoweidlem54.1 |
. . . . 5
⊢
Ⅎ𝑖𝜑 |
5 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑖 𝑦:(1...𝑀)⟶𝑌 |
6 | | nfra1 3142 |
. . . . . 6
⊢
Ⅎ𝑖∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) |
7 | 5, 6 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑖(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡))) |
8 | 4, 7 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑖(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) |
9 | | stoweidlem54.2 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
10 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡𝑦 |
11 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡(1...𝑀) |
12 | | stoweidlem54.6 |
. . . . . . . 8
⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
13 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) |
14 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝐴 |
15 | 13, 14 | nfrabw 3311 |
. . . . . . . 8
⊢
Ⅎ𝑡{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
16 | 12, 15 | nfcxfr 2904 |
. . . . . . 7
⊢
Ⅎ𝑡𝑌 |
17 | 10, 11, 16 | nff 6580 |
. . . . . 6
⊢
Ⅎ𝑡 𝑦:(1...𝑀)⟶𝑌 |
18 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) |
19 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡) |
20 | 18, 19 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑡(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) |
21 | 11, 20 | nfralw 3149 |
. . . . . 6
⊢
Ⅎ𝑡∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) |
22 | 17, 21 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑡(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡))) |
23 | 9, 22 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑡(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) |
24 | | stoweidlem54.4 |
. . . . 5
⊢
Ⅎ𝑤𝜑 |
25 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑤(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡))) |
26 | 24, 25 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑤(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) |
27 | | stoweidlem54.10 |
. . . . 5
⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} |
28 | | nfrab1 3310 |
. . . . 5
⊢
Ⅎ𝑤{𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} |
29 | 27, 28 | nfcxfr 2904 |
. . . 4
⊢
Ⅎ𝑤𝑉 |
30 | | stoweidlem54.7 |
. . . 4
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
31 | | eqid 2738 |
. . . 4
⊢
(seq1(𝑃, 𝑦)‘𝑀) = (seq1(𝑃, 𝑦)‘𝑀) |
32 | | stoweidlem54.8 |
. . . 4
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦‘𝑖)‘𝑡))) |
33 | | stoweidlem54.9 |
. . . 4
⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) |
34 | | stoweidlem54.13 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) |
35 | 34 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝑀 ∈ ℕ) |
36 | | stoweidlem54.14 |
. . . . 5
⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) |
37 | 36 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝑊:(1...𝑀)⟶𝑉) |
38 | | simprl 767 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝑦:(1...𝑀)⟶𝑌) |
39 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) ∧ 𝑤 ∈ 𝑉) → 𝑤 ∈ 𝑉) |
40 | 27 | rabeq2i 3412 |
. . . . . 6
⊢ (𝑤 ∈ 𝑉 ↔ (𝑤 ∈ 𝐽 ∧ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)))) |
41 | 40 | simplbi 497 |
. . . . 5
⊢ (𝑤 ∈ 𝑉 → 𝑤 ∈ 𝐽) |
42 | | elssuni 4868 |
. . . . . 6
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽) |
43 | | stoweidlem54.5 |
. . . . . 6
⊢ 𝑇 = ∪
𝐽 |
44 | 42, 43 | sseqtrrdi 3968 |
. . . . 5
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ 𝑇) |
45 | 39, 41, 44 | 3syl 18 |
. . . 4
⊢ (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) ∧ 𝑤 ∈ 𝑉) → 𝑤 ⊆ 𝑇) |
46 | | stoweidlem54.16 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ ∪ ran
𝑊) |
47 | 46 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝐷 ⊆ ∪ ran
𝑊) |
48 | | stoweidlem54.17 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ 𝑇) |
49 | 48 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝐷 ⊆ 𝑇) |
50 | | stoweidlem54.15 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑇) |
51 | 50 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝐵 ⊆ 𝑇) |
52 | | r19.26 3094 |
. . . . . . 7
⊢
(∀𝑖 ∈
(1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) ↔ (∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡))) |
53 | 52 | simplbi 497 |
. . . . . 6
⊢
(∀𝑖 ∈
(1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
54 | 53 | ad2antll 725 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
55 | 54 | r19.21bi 3132 |
. . . 4
⊢ (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
56 | 52 | simprbi 496 |
. . . . . 6
⊢
(∀𝑖 ∈
(1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) |
57 | 56 | ad2antll 725 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) |
58 | 57 | r19.21bi 3132 |
. . . 4
⊢ (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)) |
59 | | stoweidlem54.11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
60 | 59 | 3adant1r 1175 |
. . . 4
⊢ (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
61 | | stoweidlem54.12 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
62 | 61 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
63 | | stoweidlem54.19 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ V) |
64 | 63 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝑇 ∈ V) |
65 | | stoweidlem54.20 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
66 | 65 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝐸 ∈
ℝ+) |
67 | | stoweidlem54.21 |
. . . . 5
⊢ (𝜑 → 𝐸 < (1 / 3)) |
68 | 67 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → 𝐸 < (1 / 3)) |
69 | 8, 23, 26, 29, 12, 30, 31, 32, 33, 35, 37, 38, 45, 47, 49, 51, 55, 58, 60, 62, 64, 66, 68 | stoweidlem51 43482 |
. . 3
⊢ ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)))) |
70 | 1, 2, 3, 69 | exlimdd 2216 |
. 2
⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)))) |
71 | | df-rex 3069 |
. 2
⊢
(∃𝑥 ∈
𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)))) |
72 | 70, 71 | sylibr 233 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |