Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem54 Structured version   Visualization version   GIF version

Theorem stoweidlem54 46045
Description: There exists a function 𝑥 as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem54.1 𝑖𝜑
stoweidlem54.2 𝑡𝜑
stoweidlem54.3 𝑦𝜑
stoweidlem54.4 𝑤𝜑
stoweidlem54.5 𝑇 = 𝐽
stoweidlem54.6 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem54.7 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem54.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
stoweidlem54.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem54.10 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem54.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem54.12 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem54.13 (𝜑𝑀 ∈ ℕ)
stoweidlem54.14 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem54.15 (𝜑𝐵𝑇)
stoweidlem54.16 (𝜑𝐷 ran 𝑊)
stoweidlem54.17 (𝜑𝐷𝑇)
stoweidlem54.18 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
stoweidlem54.19 (𝜑𝑇 ∈ V)
stoweidlem54.20 (𝜑𝐸 ∈ ℝ+)
stoweidlem54.21 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem54 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑖,𝑡,𝑦,𝑇   𝐴,𝑓,𝑔,,𝑡,𝑦   𝐵,𝑓,𝑔,𝑖,𝑦   𝑓,𝐸,𝑔,𝑖,𝑦   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔,,𝑖,𝑡   𝑓,𝑊,𝑔,𝑖   𝑓,𝑌,𝑔,𝑖   𝜑,𝑓,𝑔   𝑤,𝑖,𝑡,𝑦,𝑇   𝐷,𝑖,𝑦   𝑥,𝑡,𝑦,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝑀   𝑤,𝑊   𝑤,𝑌   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑀   𝑥,𝑃   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐴(𝑤,𝑒,𝑖)   𝐵(𝑡,𝑒,)   𝐷(𝑤,𝑡,𝑒,𝑓,𝑔,)   𝑃(𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑇(𝑒)   𝑈(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑒,)   𝐹(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐽(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑀(𝑦,𝑒)   𝑉(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑦,𝑡,𝑒,)   𝑌(𝑥,𝑦,𝑡,𝑒,)   𝑍(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem54
StepHypRef Expression
1 stoweidlem54.3 . . 3 𝑦𝜑
2 nfv 1914 . . 3 𝑦𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
3 stoweidlem54.18 . . 3 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
4 stoweidlem54.1 . . . . 5 𝑖𝜑
5 nfv 1914 . . . . . 6 𝑖 𝑦:(1...𝑀)⟶𝑌
6 nfra1 3253 . . . . . 6 𝑖𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
75, 6nfan 1899 . . . . 5 𝑖(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
84, 7nfan 1899 . . . 4 𝑖(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
9 stoweidlem54.2 . . . . 5 𝑡𝜑
10 nfcv 2891 . . . . . . 7 𝑡𝑦
11 nfcv 2891 . . . . . . 7 𝑡(1...𝑀)
12 stoweidlem54.6 . . . . . . . 8 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
13 nfra1 3253 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
14 nfcv 2891 . . . . . . . . 9 𝑡𝐴
1513, 14nfrabw 3432 . . . . . . . 8 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
1612, 15nfcxfr 2889 . . . . . . 7 𝑡𝑌
1710, 11, 16nff 6648 . . . . . 6 𝑡 𝑦:(1...𝑀)⟶𝑌
18 nfra1 3253 . . . . . . . 8 𝑡𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀)
19 nfra1 3253 . . . . . . . 8 𝑡𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)
2018, 19nfan 1899 . . . . . . 7 𝑡(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2111, 20nfralw 3276 . . . . . 6 𝑡𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2217, 21nfan 1899 . . . . 5 𝑡(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
239, 22nfan 1899 . . . 4 𝑡(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
24 stoweidlem54.4 . . . . 5 𝑤𝜑
25 nfv 1914 . . . . 5 𝑤(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
2624, 25nfan 1899 . . . 4 𝑤(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
27 stoweidlem54.10 . . . . 5 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
28 nfrab1 3415 . . . . 5 𝑤{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
2927, 28nfcxfr 2889 . . . 4 𝑤𝑉
30 stoweidlem54.7 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
31 eqid 2729 . . . 4 (seq1(𝑃, 𝑦)‘𝑀) = (seq1(𝑃, 𝑦)‘𝑀)
32 stoweidlem54.8 . . . 4 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
33 stoweidlem54.9 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
34 stoweidlem54.13 . . . . 5 (𝜑𝑀 ∈ ℕ)
3534adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑀 ∈ ℕ)
36 stoweidlem54.14 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑊:(1...𝑀)⟶𝑉)
38 simprl 770 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑦:(1...𝑀)⟶𝑌)
39 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑉)
4027reqabi 3418 . . . . . 6 (𝑤𝑉 ↔ (𝑤𝐽 ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
4140simplbi 497 . . . . 5 (𝑤𝑉𝑤𝐽)
42 elssuni 4888 . . . . . 6 (𝑤𝐽𝑤 𝐽)
43 stoweidlem54.5 . . . . . 6 𝑇 = 𝐽
4442, 43sseqtrrdi 3977 . . . . 5 (𝑤𝐽𝑤𝑇)
4539, 41, 443syl 18 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑇)
46 stoweidlem54.16 . . . . 5 (𝜑𝐷 ran 𝑊)
4746adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷 ran 𝑊)
48 stoweidlem54.17 . . . . 5 (𝜑𝐷𝑇)
4948adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷𝑇)
50 stoweidlem54.15 . . . . 5 (𝜑𝐵𝑇)
5150adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐵𝑇)
52 r19.26 3089 . . . . . . 7 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) ↔ (∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
5352simplbi 497 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5453ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5554r19.21bi 3221 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5652simprbi 496 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5756ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5857r19.21bi 3221 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
59 stoweidlem54.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
60593adant1r 1178 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
61 stoweidlem54.12 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
6261adantlr 715 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
63 stoweidlem54.19 . . . . 5 (𝜑𝑇 ∈ V)
6463adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑇 ∈ V)
65 stoweidlem54.20 . . . . 5 (𝜑𝐸 ∈ ℝ+)
6665adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 ∈ ℝ+)
67 stoweidlem54.21 . . . . 5 (𝜑𝐸 < (1 / 3))
6867adantr 480 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 < (1 / 3))
698, 23, 26, 29, 12, 30, 31, 32, 33, 35, 37, 38, 45, 47, 49, 51, 55, 58, 60, 62, 64, 66, 68stoweidlem51 46042 . . 3 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
701, 2, 3, 69exlimdd 2221 . 2 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
71 df-rex 3054 . 2 (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
7270, 71sylibr 234 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903   cuni 4858   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  3c3 12184  +crp 12893  ...cfz 13410  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969
This theorem is referenced by:  stoweidlem57  46048
  Copyright terms: Public domain W3C validator