MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd3f Structured version   Visualization version   GIF version

Theorem fvmptd3f 6872
Description: Alternate deduction version of fvmpt 6857 with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022.)
Hypotheses
Ref Expression
fvmptd2f.1 (𝜑𝐴𝐷)
fvmptd2f.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptd2f.3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
fvmptd3f.4 𝑥𝐹
fvmptd3f.5 𝑥𝜓
fvmptd3f.6 𝑥𝜑
Assertion
Ref Expression
fvmptd3f (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd3f
StepHypRef Expression
1 fvmptd3f.6 . 2 𝑥𝜑
2 fvmptd3f.4 . . . 4 𝑥𝐹
3 nfmpt1 5178 . . . 4 𝑥(𝑥𝐷𝐵)
42, 3nfeq 2919 . . 3 𝑥 𝐹 = (𝑥𝐷𝐵)
5 fvmptd3f.5 . . 3 𝑥𝜓
64, 5nfim 1900 . 2 𝑥(𝐹 = (𝑥𝐷𝐵) → 𝜓)
7 fvmptd2f.1 . . . 4 (𝜑𝐴𝐷)
87elexd 3442 . . 3 (𝜑𝐴 ∈ V)
9 isset 3435 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
108, 9sylib 217 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
11 fveq1 6755 . . 3 (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
12 simpr 484 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
1312fveq2d 6760 . . . . . 6 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝑥) = ((𝑥𝐷𝐵)‘𝐴))
147adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → 𝐴𝐷)
1512, 14eqeltrd 2839 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥𝐷)
16 fvmptd2f.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
17 eqid 2738 . . . . . . . 8 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1817fvmpt2 6868 . . . . . . 7 ((𝑥𝐷𝐵𝑉) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
1915, 16, 18syl2anc 583 . . . . . 6 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
2013, 19eqtr3d 2780 . . . . 5 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝐴) = 𝐵)
2120eqeq2d 2749 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴) ↔ (𝐹𝐴) = 𝐵))
22 fvmptd2f.3 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
2321, 22sylbid 239 . . 3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴) → 𝜓))
2411, 23syl5 34 . 2 ((𝜑𝑥 = 𝐴) → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
251, 6, 10, 24exlimdd 2216 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wnfc 2886  Vcvv 3422  cmpt 5153  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  fvmptd2f  6873
  Copyright terms: Public domain W3C validator