MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd3f Structured version   Visualization version   GIF version

Theorem fvmptd3f 6949
Description: Alternate deduction version of fvmpt 6934 with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022.)
Hypotheses
Ref Expression
fvmptd2f.1 (𝜑𝐴𝐷)
fvmptd2f.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptd2f.3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
fvmptd3f.4 𝑥𝐹
fvmptd3f.5 𝑥𝜓
fvmptd3f.6 𝑥𝜑
Assertion
Ref Expression
fvmptd3f (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd3f
StepHypRef Expression
1 fvmptd3f.6 . 2 𝑥𝜑
2 fvmptd3f.4 . . . 4 𝑥𝐹
3 nfmpt1 5194 . . . 4 𝑥(𝑥𝐷𝐵)
42, 3nfeq 2905 . . 3 𝑥 𝐹 = (𝑥𝐷𝐵)
5 fvmptd3f.5 . . 3 𝑥𝜓
64, 5nfim 1896 . 2 𝑥(𝐹 = (𝑥𝐷𝐵) → 𝜓)
7 fvmptd2f.1 . . . 4 (𝜑𝐴𝐷)
87elexd 3462 . . 3 (𝜑𝐴 ∈ V)
9 isset 3452 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
108, 9sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
11 fveq1 6825 . . 3 (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
12 simpr 484 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
1312fveq2d 6830 . . . . . 6 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝑥) = ((𝑥𝐷𝐵)‘𝐴))
147adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → 𝐴𝐷)
1512, 14eqeltrd 2828 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥𝐷)
16 fvmptd2f.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
17 eqid 2729 . . . . . . . 8 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1817fvmpt2 6945 . . . . . . 7 ((𝑥𝐷𝐵𝑉) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
1915, 16, 18syl2anc 584 . . . . . 6 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
2013, 19eqtr3d 2766 . . . . 5 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝐴) = 𝐵)
2120eqeq2d 2740 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴) ↔ (𝐹𝐴) = 𝐵))
22 fvmptd2f.3 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
2321, 22sylbid 240 . . 3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴) → 𝜓))
2411, 23syl5 34 . 2 ((𝜑𝑥 = 𝐴) → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
251, 6, 10, 24exlimdd 2221 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  Vcvv 3438  cmpt 5176  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  fvmptd2f  6950
  Copyright terms: Public domain W3C validator