| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptd3f | Structured version Visualization version GIF version | ||
| Description: Alternate deduction version of fvmpt 6986 with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022.) |
| Ref | Expression |
|---|---|
| fvmptd2f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd2f.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
| fvmptd2f.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
| fvmptd3f.4 | ⊢ Ⅎ𝑥𝐹 |
| fvmptd3f.5 | ⊢ Ⅎ𝑥𝜓 |
| fvmptd3f.6 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| fvmptd3f | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd3f.6 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fvmptd3f.4 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfmpt1 5220 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 4 | 2, 3 | nfeq 2912 | . . 3 ⊢ Ⅎ𝑥 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| 5 | fvmptd3f.5 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 4, 5 | nfim 1896 | . 2 ⊢ Ⅎ𝑥(𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓) |
| 7 | fvmptd2f.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 8 | 7 | elexd 3483 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 9 | isset 3473 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 11 | fveq1 6875 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 13 | 12 | fveq2d 6880 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
| 14 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐷) |
| 15 | 12, 14 | eqeltrd 2834 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 ∈ 𝐷) |
| 16 | fvmptd2f.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 17 | eqid 2735 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 18 | 17 | fvmpt2 6997 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
| 19 | 15, 16, 18 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
| 20 | 13, 19 | eqtr3d 2772 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐵) |
| 21 | 20 | eqeq2d 2746 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) ↔ (𝐹‘𝐴) = 𝐵)) |
| 22 | fvmptd2f.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
| 23 | 21, 22 | sylbid 240 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) → 𝜓)) |
| 24 | 11, 23 | syl5 34 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| 25 | 1, 6, 10, 24 | exlimdd 2220 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: fvmptd2f 7002 |
| Copyright terms: Public domain | W3C validator |