| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptd3f | Structured version Visualization version GIF version | ||
| Description: Alternate deduction version of fvmpt 7016 with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022.) |
| Ref | Expression |
|---|---|
| fvmptd2f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd2f.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
| fvmptd2f.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
| fvmptd3f.4 | ⊢ Ⅎ𝑥𝐹 |
| fvmptd3f.5 | ⊢ Ⅎ𝑥𝜓 |
| fvmptd3f.6 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| fvmptd3f | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd3f.6 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fvmptd3f.4 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfmpt1 5250 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 4 | 2, 3 | nfeq 2919 | . . 3 ⊢ Ⅎ𝑥 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| 5 | fvmptd3f.5 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 4, 5 | nfim 1896 | . 2 ⊢ Ⅎ𝑥(𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓) |
| 7 | fvmptd2f.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 8 | 7 | elexd 3504 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 9 | isset 3494 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 11 | fveq1 6905 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 13 | 12 | fveq2d 6910 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
| 14 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐷) |
| 15 | 12, 14 | eqeltrd 2841 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 ∈ 𝐷) |
| 16 | fvmptd2f.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 17 | eqid 2737 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 18 | 17 | fvmpt2 7027 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
| 19 | 15, 16, 18 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
| 20 | 13, 19 | eqtr3d 2779 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐵) |
| 21 | 20 | eqeq2d 2748 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) ↔ (𝐹‘𝐴) = 𝐵)) |
| 22 | fvmptd2f.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
| 23 | 21, 22 | sylbid 240 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) → 𝜓)) |
| 24 | 11, 23 | syl5 34 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| 25 | 1, 6, 10, 24 | exlimdd 2220 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2890 Vcvv 3480 ↦ cmpt 5225 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: fvmptd2f 7032 |
| Copyright terms: Public domain | W3C validator |