|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exlimimdd | Structured version Visualization version GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) Shorten exlimdd 2219. (Revised by Wolf Lammen, 3-Sep-2023.) | 
| Ref | Expression | 
|---|---|
| exlimdd.1 | ⊢ Ⅎ𝑥𝜑 | 
| exlimdd.2 | ⊢ Ⅎ𝑥𝜒 | 
| exlimdd.3 | ⊢ (𝜑 → ∃𝑥𝜓) | 
| exlimimdd.4 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| exlimimdd | ⊢ (𝜑 → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exlimdd.3 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimdd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | exlimdd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 4 | exlimimdd.4 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 5 | 2, 3, 4 | exlimd 2217 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | 
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1778 Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: exlimdd 2219 tz6.12cOLD 6932 ovmpodf 7590 gsum2d2lem 19992 2ndresdju 32660 padct 32732 stoweidlem27 46047 intsaluni 46349 isomenndlem 46550 tz6.12c-afv2 47259 | 
| Copyright terms: Public domain | W3C validator |