| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimimdd | Structured version Visualization version GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) Shorten exlimdd 2221. (Revised by Wolf Lammen, 3-Sep-2023.) |
| Ref | Expression |
|---|---|
| exlimdd.1 | ⊢ Ⅎ𝑥𝜑 |
| exlimdd.2 | ⊢ Ⅎ𝑥𝜒 |
| exlimdd.3 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimimdd.4 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimimdd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdd.3 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimdd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | exlimdd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 4 | exlimimdd.4 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 5 | 2, 3, 4 | exlimd 2219 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimdd 2221 tz6.12cOLD 6908 ovmpodf 7568 gsum2d2lem 19959 2ndresdju 32632 padct 32702 stoweidlem27 46023 intsaluni 46325 isomenndlem 46526 tz6.12c-afv2 47238 |
| Copyright terms: Public domain | W3C validator |