Step | Hyp | Ref
| Expression |
1 | | stoweidlem43.1 |
. . 3
⊢
Ⅎ𝑔𝜑 |
2 | | nfv 1921 |
. . 3
⊢
Ⅎ𝑔∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) |
3 | | stoweidlem43.15 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (𝑇 ∖ 𝑈)) |
4 | 3 | eldifad 3865 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ 𝑇) |
5 | | stoweidlem43.14 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
6 | | stoweidlem43.13 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
7 | | elunii 4811 |
. . . . . . 7
⊢ ((𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽) → 𝑍 ∈ ∪ 𝐽) |
8 | 5, 6, 7 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ ∪ 𝐽) |
9 | | stoweidlem43.6 |
. . . . . 6
⊢ 𝑇 = ∪
𝐽 |
10 | 8, 9 | eleqtrrdi 2845 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
11 | 3 | eldifbd 3866 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑆 ∈ 𝑈) |
12 | | nelne2 3032 |
. . . . . . 7
⊢ ((𝑍 ∈ 𝑈 ∧ ¬ 𝑆 ∈ 𝑈) → 𝑍 ≠ 𝑆) |
13 | 5, 11, 12 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → 𝑍 ≠ 𝑆) |
14 | 13 | necomd 2990 |
. . . . 5
⊢ (𝜑 → 𝑆 ≠ 𝑍) |
15 | 4, 10, 14 | 3jca 1129 |
. . . 4
⊢ (𝜑 → (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) |
16 | | simpr2 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → 𝑍 ∈ 𝑇) |
17 | | stoweidlem43.2 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝜑 |
18 | | nfv 1921 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍) |
19 | 17, 18 | nfan 1906 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) |
20 | | nfv 1921 |
. . . . . . . 8
⊢
Ⅎ𝑡∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍) |
21 | 19, 20 | nfim 1903 |
. . . . . . 7
⊢
Ⅎ𝑡((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍)) |
22 | | eleq1 2821 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑍 → (𝑡 ∈ 𝑇 ↔ 𝑍 ∈ 𝑇)) |
23 | | neeq2 2998 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑍 → (𝑆 ≠ 𝑡 ↔ 𝑆 ≠ 𝑍)) |
24 | 22, 23 | 3anbi23d 1440 |
. . . . . . . . 9
⊢ (𝑡 = 𝑍 → ((𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡) ↔ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍))) |
25 | 24 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) ↔ (𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)))) |
26 | | fveq2 6687 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑍 → (𝑔‘𝑡) = (𝑔‘𝑍)) |
27 | 26 | neeq2d 2995 |
. . . . . . . . 9
⊢ (𝑡 = 𝑍 → ((𝑔‘𝑆) ≠ (𝑔‘𝑡) ↔ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) |
28 | 27 | rexbidv 3208 |
. . . . . . . 8
⊢ (𝑡 = 𝑍 → (∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡) ↔ ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍))) |
29 | 25, 28 | imbi12d 348 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡)) ↔ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍)))) |
30 | | simpr1 1195 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → 𝑆 ∈ 𝑇) |
31 | | eleq1 2821 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑆 → (𝑟 ∈ 𝑇 ↔ 𝑆 ∈ 𝑇)) |
32 | | neeq1 2997 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑆 → (𝑟 ≠ 𝑡 ↔ 𝑆 ≠ 𝑡)) |
33 | 31, 32 | 3anbi13d 1439 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑆 → ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) ↔ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡))) |
34 | 33 | anbi2d 632 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑆 → ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) ↔ (𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)))) |
35 | | fveq2 6687 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑆 → (𝑔‘𝑟) = (𝑔‘𝑆)) |
36 | 35 | neeq1d 2994 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑆 → ((𝑔‘𝑟) ≠ (𝑔‘𝑡) ↔ (𝑔‘𝑆) ≠ (𝑔‘𝑡))) |
37 | 36 | rexbidv 3208 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑆 → (∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡) ↔ ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡))) |
38 | 34, 37 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑟 = 𝑆 → (((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡)) ↔ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡)))) |
39 | | stoweidlem43.12 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡)) |
40 | 39 | a1i 11 |
. . . . . . . . 9
⊢ (𝑟 ∈ 𝑇 → ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡))) |
41 | 38, 40 | vtoclga 3481 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝑇 → ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡))) |
42 | 30, 41 | mpcom 38 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡)) |
43 | 21, 29, 42 | vtoclg1f 3472 |
. . . . . 6
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍))) |
44 | 16, 43 | mpcom 38 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍)) |
45 | | df-rex 3060 |
. . . . 5
⊢
(∃𝑔 ∈
𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍) ↔ ∃𝑔(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) |
46 | 44, 45 | sylib 221 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) |
47 | 15, 46 | mpdan 687 |
. . 3
⊢ (𝜑 → ∃𝑔(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) |
48 | | nfv 1921 |
. . . . . 6
⊢
Ⅎ𝑡(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍)) |
49 | 17, 48 | nfan 1906 |
. . . . 5
⊢
Ⅎ𝑡(𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) |
50 | | nfcv 2900 |
. . . . 5
⊢
Ⅎ𝑡𝑔 |
51 | | eqid 2739 |
. . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) |
52 | | stoweidlem43.4 |
. . . . . . 7
⊢ 𝐾 = (topGen‘ran
(,)) |
53 | | eqid 2739 |
. . . . . . 7
⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) |
54 | | stoweidlem43.8 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) |
55 | 54 | sselda 3887 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
56 | 52, 9, 53, 55 | fcnre 42147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
57 | 56 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
58 | | stoweidlem43.9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑙‘𝑡))) ∈ 𝐴) |
59 | 58 | 3adant1r 1178 |
. . . . 5
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑙‘𝑡))) ∈ 𝐴) |
60 | | stoweidlem43.11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
61 | 60 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
62 | 4 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → 𝑆 ∈ 𝑇) |
63 | 10 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → 𝑍 ∈ 𝑇) |
64 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → 𝑔 ∈ 𝐴) |
65 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → (𝑔‘𝑆) ≠ (𝑔‘𝑍)) |
66 | 49, 50, 51, 57, 59, 61, 62, 63, 64, 65 | stoweidlem23 43147 |
. . . 4
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0)) |
67 | | eleq1 2821 |
. . . . . . . 8
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → (𝑓 ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴)) |
68 | | fveq1 6686 |
. . . . . . . . 9
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → (𝑓‘𝑆) = ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆)) |
69 | | fveq1 6686 |
. . . . . . . . 9
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → (𝑓‘𝑍) = ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍)) |
70 | 68, 69 | neeq12d 2996 |
. . . . . . . 8
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → ((𝑓‘𝑆) ≠ (𝑓‘𝑍) ↔ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍))) |
71 | 69 | eqeq1d 2741 |
. . . . . . . 8
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → ((𝑓‘𝑍) = 0 ↔ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0)) |
72 | 67, 70, 71 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → ((𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) ↔ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0))) |
73 | 72 | spcegv 3504 |
. . . . . 6
⊢ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 → (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0))) |
74 | 73 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0))) |
75 | 74 | pm2.43i 52 |
. . . 4
⊢ (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) |
76 | 66, 75 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) |
77 | 1, 2, 47, 76 | exlimdd 2222 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) |
78 | | stoweidlem43.3 |
. . . . 5
⊢
Ⅎℎ𝑄 |
79 | | nfmpt1 5138 |
. . . . 5
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ (((𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠)))‘𝑡) / sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ))) |
80 | | nfcv 2900 |
. . . . 5
⊢
Ⅎ𝑡𝑓 |
81 | | nfcv 2900 |
. . . . 5
⊢
Ⅎ𝑡(𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))) |
82 | | nfv 1921 |
. . . . . 6
⊢
Ⅎ𝑡(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) |
83 | 17, 82 | nfan 1906 |
. . . . 5
⊢
Ⅎ𝑡(𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) |
84 | | stoweidlem43.5 |
. . . . 5
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
85 | | fveq2 6687 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (𝑓‘𝑠) = (𝑓‘𝑡)) |
86 | 85, 85 | oveq12d 7201 |
. . . . . 6
⊢ (𝑠 = 𝑡 → ((𝑓‘𝑠) · (𝑓‘𝑠)) = ((𝑓‘𝑡) · (𝑓‘𝑡))) |
87 | 86 | cbvmptv 5143 |
. . . . 5
⊢ (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))) = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑓‘𝑡))) |
88 | | eqid 2739 |
. . . . 5
⊢ sup(ran
(𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ) = sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ) |
89 | | eqid 2739 |
. . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ (((𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠)))‘𝑡) / sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ))) = (𝑡 ∈ 𝑇 ↦ (((𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠)))‘𝑡) / sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ))) |
90 | | stoweidlem43.7 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Comp) |
91 | 90 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝐽 ∈ Comp) |
92 | 54 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝐴 ⊆ (𝐽 Cn 𝐾)) |
93 | | eleq1 2821 |
. . . . . . . . 9
⊢ (𝑓 = 𝑘 → (𝑓 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
94 | 93 | 3anbi2d 1442 |
. . . . . . . 8
⊢ (𝑓 = 𝑘 → ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴))) |
95 | | fveq1 6686 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑘 → (𝑓‘𝑡) = (𝑘‘𝑡)) |
96 | 95 | oveq1d 7198 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑘 → ((𝑓‘𝑡) · (𝑙‘𝑡)) = ((𝑘‘𝑡) · (𝑙‘𝑡))) |
97 | 96 | mpteq2dv 5136 |
. . . . . . . . 9
⊢ (𝑓 = 𝑘 → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡)))) |
98 | 97 | eleq1d 2818 |
. . . . . . . 8
⊢ (𝑓 = 𝑘 → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴)) |
99 | 94, 98 | imbi12d 348 |
. . . . . . 7
⊢ (𝑓 = 𝑘 → (((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴))) |
100 | | stoweidlem43.10 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) |
101 | 99, 100 | chvarvv 2010 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) |
102 | 101 | 3adant1r 1178 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) |
103 | 60 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
104 | 4 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝑆 ∈ 𝑇) |
105 | 10 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝑍 ∈ 𝑇) |
106 | | simpr1 1195 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝑓 ∈ 𝐴) |
107 | | simpr2 1196 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → (𝑓‘𝑆) ≠ (𝑓‘𝑍)) |
108 | | simpr3 1197 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → (𝑓‘𝑍) = 0) |
109 | 78, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108 | stoweidlem36 43160 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) |
110 | 109 | ex 416 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆)))) |
111 | 110 | exlimdv 1940 |
. 2
⊢ (𝜑 → (∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆)))) |
112 | 77, 111 | mpd 15 |
1
⊢ (𝜑 → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) |