Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem43 Structured version   Visualization version   GIF version

Theorem stoweidlem43 44596
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem43.1 𝑔𝜑
stoweidlem43.2 𝑡𝜑
stoweidlem43.3 𝑄
stoweidlem43.4 𝐾 = (topGen‘ran (,))
stoweidlem43.5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem43.6 𝑇 = 𝐽
stoweidlem43.7 (𝜑𝐽 ∈ Comp)
stoweidlem43.8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem43.9 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.10 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem43.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
stoweidlem43.13 (𝜑𝑈𝐽)
stoweidlem43.14 (𝜑𝑍𝑈)
stoweidlem43.15 (𝜑𝑆 ∈ (𝑇𝑈))
Assertion
Ref Expression
stoweidlem43 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑙,𝑡,𝐴   𝑓,,𝑇,𝑡   𝑇,𝑙   𝑓,𝑟,𝑔,𝑡,𝐴   𝑥,𝑓,𝑔,𝑡,𝐴   𝑄,𝑓   𝑆,𝑓,𝑔,𝑙,𝑡   𝑓,𝑍,𝑔,𝑙,𝑡   𝜑,𝑓,𝑙   𝐴,   𝑆,   ,𝑍   𝑇,𝑟   𝑆,𝑟   𝜑,𝑟   𝑥,𝑇   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑄(𝑥,𝑡,𝑔,,𝑟,𝑙)   𝑇(𝑔)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝑍(𝑟)

Proof of Theorem stoweidlem43
Dummy variables 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem43.1 . . 3 𝑔𝜑
2 nfv 1917 . . 3 𝑔𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
3 stoweidlem43.15 . . . . . 6 (𝜑𝑆 ∈ (𝑇𝑈))
43eldifad 3957 . . . . 5 (𝜑𝑆𝑇)
5 stoweidlem43.14 . . . . . . 7 (𝜑𝑍𝑈)
6 stoweidlem43.13 . . . . . . 7 (𝜑𝑈𝐽)
7 elunii 4907 . . . . . . 7 ((𝑍𝑈𝑈𝐽) → 𝑍 𝐽)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝑍 𝐽)
9 stoweidlem43.6 . . . . . 6 𝑇 = 𝐽
108, 9eleqtrrdi 2844 . . . . 5 (𝜑𝑍𝑇)
113eldifbd 3958 . . . . . . 7 (𝜑 → ¬ 𝑆𝑈)
12 nelne2 3040 . . . . . . 7 ((𝑍𝑈 ∧ ¬ 𝑆𝑈) → 𝑍𝑆)
135, 11, 12syl2anc 584 . . . . . 6 (𝜑𝑍𝑆)
1413necomd 2996 . . . . 5 (𝜑𝑆𝑍)
154, 10, 143jca 1128 . . . 4 (𝜑 → (𝑆𝑇𝑍𝑇𝑆𝑍))
16 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → 𝑍𝑇)
17 stoweidlem43.2 . . . . . . . . 9 𝑡𝜑
18 nfv 1917 . . . . . . . . 9 𝑡(𝑆𝑇𝑍𝑇𝑆𝑍)
1917, 18nfan 1902 . . . . . . . 8 𝑡(𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))
20 nfv 1917 . . . . . . . 8 𝑡𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)
2119, 20nfim 1899 . . . . . . 7 𝑡((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
22 eleq1 2821 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑡𝑇𝑍𝑇))
23 neeq2 3004 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑆𝑡𝑆𝑍))
2422, 233anbi23d 1439 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑆𝑇𝑡𝑇𝑆𝑡) ↔ (𝑆𝑇𝑍𝑇𝑆𝑍)))
2524anbi2d 629 . . . . . . . 8 (𝑡 = 𝑍 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))))
26 fveq2 6879 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑔𝑡) = (𝑔𝑍))
2726neeq2d 3001 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑔𝑆) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑍)))
2827rexbidv 3178 . . . . . . . 8 (𝑡 = 𝑍 → (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
2925, 28imbi12d 344 . . . . . . 7 (𝑡 = 𝑍 → (((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))))
30 simpr1 1194 . . . . . . . 8 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → 𝑆𝑇)
31 eleq1 2821 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑇𝑆𝑇))
32 neeq1 3003 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑡𝑆𝑡))
3331, 323anbi13d 1438 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑟𝑇𝑡𝑇𝑟𝑡) ↔ (𝑆𝑇𝑡𝑇𝑆𝑡)))
3433anbi2d 629 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡))))
35 fveq2 6879 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑔𝑟) = (𝑔𝑆))
3635neeq1d 3000 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑔𝑟) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑡)))
3736rexbidv 3178 . . . . . . . . . 10 (𝑟 = 𝑆 → (∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
3834, 37imbi12d 344 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))))
39 stoweidlem43.12 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
4039a1i 11 . . . . . . . . 9 (𝑟𝑇 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)))
4138, 40vtoclga 3563 . . . . . . . 8 (𝑆𝑇 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
4230, 41mpcom 38 . . . . . . 7 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))
4321, 29, 42vtoclg1f 3553 . . . . . 6 (𝑍𝑇 → ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
4416, 43mpcom 38 . . . . 5 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
45 df-rex 3071 . . . . 5 (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍) ↔ ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4644, 45sylib 217 . . . 4 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4715, 46mpdan 685 . . 3 (𝜑 → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
48 nfv 1917 . . . . . 6 𝑡(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))
4917, 48nfan 1902 . . . . 5 𝑡(𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
50 nfcv 2903 . . . . 5 𝑡𝑔
51 eqid 2732 . . . . 5 (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))
52 stoweidlem43.4 . . . . . . 7 𝐾 = (topGen‘ran (,))
53 eqid 2732 . . . . . . 7 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
54 stoweidlem43.8 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
5554sselda 3979 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
5652, 9, 53, 55fcnre 43544 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756adantlr 713 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 stoweidlem43.9 . . . . . 6 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
59583adant1r 1177 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
60 stoweidlem43.11 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6160adantlr 713 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
624adantr 481 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑆𝑇)
6310adantr 481 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑍𝑇)
64 simprl 769 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑔𝐴)
65 simprr 771 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → (𝑔𝑆) ≠ (𝑔𝑍))
6649, 50, 51, 57, 59, 61, 62, 63, 64, 65stoweidlem23 44576 . . . 4 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
67 eleq1 2821 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝐴 ↔ (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴))
68 fveq1 6878 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑆) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆))
69 fveq1 6878 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑍) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍))
7068, 69neeq12d 3002 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑆) ≠ (𝑓𝑍) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍)))
7169eqeq1d 2734 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑍) = 0 ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
7267, 70, 713anbi123d 1436 . . . . . . 7 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0)))
7372spcegv 3585 . . . . . 6 ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
74733ad2ant1 1133 . . . . 5 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
7574pm2.43i 52 . . . 4 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
7666, 75syl 17 . . 3 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
771, 2, 47, 76exlimdd 2213 . 2 (𝜑 → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
78 stoweidlem43.3 . . . . 5 𝑄
79 nfmpt1 5250 . . . . 5 𝑡(𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
80 nfcv 2903 . . . . 5 𝑡𝑓
81 nfcv 2903 . . . . 5 𝑡(𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))
82 nfv 1917 . . . . . 6 𝑡(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
8317, 82nfan 1902 . . . . 5 𝑡(𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
84 stoweidlem43.5 . . . . 5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
85 fveq2 6879 . . . . . . 7 (𝑠 = 𝑡 → (𝑓𝑠) = (𝑓𝑡))
8685, 85oveq12d 7412 . . . . . 6 (𝑠 = 𝑡 → ((𝑓𝑠) · (𝑓𝑠)) = ((𝑓𝑡) · (𝑓𝑡)))
8786cbvmptv 5255 . . . . 5 (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑓𝑡)))
88 eqid 2732 . . . . 5 sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ) = sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )
89 eqid 2732 . . . . 5 (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ))) = (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
90 stoweidlem43.7 . . . . . 6 (𝜑𝐽 ∈ Comp)
9190adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐽 ∈ Comp)
9254adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
93 eleq1 2821 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑓𝐴𝑘𝐴))
94933anbi2d 1441 . . . . . . . 8 (𝑓 = 𝑘 → ((𝜑𝑓𝐴𝑙𝐴) ↔ (𝜑𝑘𝐴𝑙𝐴)))
95 fveq1 6878 . . . . . . . . . . 11 (𝑓 = 𝑘 → (𝑓𝑡) = (𝑘𝑡))
9695oveq1d 7409 . . . . . . . . . 10 (𝑓 = 𝑘 → ((𝑓𝑡) · (𝑙𝑡)) = ((𝑘𝑡) · (𝑙𝑡)))
9796mpteq2dv 5244 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) = (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))))
9897eleq1d 2818 . . . . . . . 8 (𝑓 = 𝑘 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴))
9994, 98imbi12d 344 . . . . . . 7 (𝑓 = 𝑘 → (((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴) ↔ ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)))
100 stoweidlem43.10 . . . . . . 7 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
10199, 100chvarvv 2002 . . . . . 6 ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
1021013adant1r 1177 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
10360adantlr 713 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1044adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑆𝑇)
10510adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑍𝑇)
106 simpr1 1194 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑓𝐴)
107 simpr2 1195 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑆) ≠ (𝑓𝑍))
108 simpr3 1196 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑍) = 0)
10978, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108stoweidlem36 44589 . . . 4 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → ∃(𝑄 ∧ 0 < (𝑆)))
110109ex 413 . . 3 (𝜑 → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
111110exlimdv 1936 . 2 (𝜑 → (∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
11277, 111mpd 15 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wnf 1785  wcel 2106  wnfc 2883  wne 2940  wral 3061  wrex 3070  {crab 3432  cdif 3942  wss 3945   cuni 4902   class class class wbr 5142  cmpt 5225  ran crn 5671  wf 6529  cfv 6533  (class class class)co 7394  supcsup 9419  cr 11093  0cc0 11094  1c1 11095   + caddc 11097   · cmul 11099   < clt 11232  cle 11233  cmin 11428   / cdiv 11855  (,)cioo 13308  topGenctg 17367   Cn ccn 22659  Compccmp 22821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172  ax-mulf 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-2o 8451  df-er 8688  df-map 8807  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-fi 9390  df-sup 9421  df-inf 9422  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-q 12917  df-rp 12959  df-xneg 13076  df-xadd 13077  df-xmul 13078  df-ioo 13312  df-icc 13315  df-fz 13469  df-fzo 13612  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-starv 17196  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-unif 17204  df-hom 17205  df-cco 17206  df-rest 17352  df-topn 17353  df-0g 17371  df-gsum 17372  df-topgen 17373  df-pt 17374  df-prds 17377  df-xrs 17432  df-qtop 17437  df-imas 17438  df-xps 17440  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-submnd 18650  df-mulg 18925  df-cntz 19149  df-cmn 19616  df-psmet 20872  df-xmet 20873  df-met 20874  df-bl 20875  df-mopn 20876  df-cnfld 20881  df-top 22327  df-topon 22344  df-topsp 22366  df-bases 22380  df-cn 22662  df-cnp 22663  df-cmp 22822  df-tx 22997  df-hmeo 23190  df-xms 23757  df-ms 23758  df-tms 23759
This theorem is referenced by:  stoweidlem46  44599
  Copyright terms: Public domain W3C validator