| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | stoweidlem43.1 | . . 3
⊢
Ⅎ𝑔𝜑 | 
| 2 |  | nfv 1913 | . . 3
⊢
Ⅎ𝑔∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) | 
| 3 |  | stoweidlem43.15 | . . . . . 6
⊢ (𝜑 → 𝑆 ∈ (𝑇 ∖ 𝑈)) | 
| 4 | 3 | eldifad 3962 | . . . . 5
⊢ (𝜑 → 𝑆 ∈ 𝑇) | 
| 5 |  | stoweidlem43.14 | . . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑈) | 
| 6 |  | stoweidlem43.13 | . . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝐽) | 
| 7 |  | elunii 4911 | . . . . . . 7
⊢ ((𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽) → 𝑍 ∈ ∪ 𝐽) | 
| 8 | 5, 6, 7 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → 𝑍 ∈ ∪ 𝐽) | 
| 9 |  | stoweidlem43.6 | . . . . . 6
⊢ 𝑇 = ∪
𝐽 | 
| 10 | 8, 9 | eleqtrrdi 2851 | . . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑇) | 
| 11 | 3 | eldifbd 3963 | . . . . . . 7
⊢ (𝜑 → ¬ 𝑆 ∈ 𝑈) | 
| 12 |  | nelne2 3039 | . . . . . . 7
⊢ ((𝑍 ∈ 𝑈 ∧ ¬ 𝑆 ∈ 𝑈) → 𝑍 ≠ 𝑆) | 
| 13 | 5, 11, 12 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → 𝑍 ≠ 𝑆) | 
| 14 | 13 | necomd 2995 | . . . . 5
⊢ (𝜑 → 𝑆 ≠ 𝑍) | 
| 15 | 4, 10, 14 | 3jca 1128 | . . . 4
⊢ (𝜑 → (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) | 
| 16 |  | simpr2 1195 | . . . . . 6
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → 𝑍 ∈ 𝑇) | 
| 17 |  | stoweidlem43.2 | . . . . . . . . 9
⊢
Ⅎ𝑡𝜑 | 
| 18 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑡(𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍) | 
| 19 | 17, 18 | nfan 1898 | . . . . . . . 8
⊢
Ⅎ𝑡(𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) | 
| 20 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑡∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍) | 
| 21 | 19, 20 | nfim 1895 | . . . . . . 7
⊢
Ⅎ𝑡((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍)) | 
| 22 |  | eleq1 2828 | . . . . . . . . . 10
⊢ (𝑡 = 𝑍 → (𝑡 ∈ 𝑇 ↔ 𝑍 ∈ 𝑇)) | 
| 23 |  | neeq2 3003 | . . . . . . . . . 10
⊢ (𝑡 = 𝑍 → (𝑆 ≠ 𝑡 ↔ 𝑆 ≠ 𝑍)) | 
| 24 | 22, 23 | 3anbi23d 1440 | . . . . . . . . 9
⊢ (𝑡 = 𝑍 → ((𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡) ↔ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍))) | 
| 25 | 24 | anbi2d 630 | . . . . . . . 8
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) ↔ (𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)))) | 
| 26 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑡 = 𝑍 → (𝑔‘𝑡) = (𝑔‘𝑍)) | 
| 27 | 26 | neeq2d 3000 | . . . . . . . . 9
⊢ (𝑡 = 𝑍 → ((𝑔‘𝑆) ≠ (𝑔‘𝑡) ↔ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) | 
| 28 | 27 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑡 = 𝑍 → (∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡) ↔ ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍))) | 
| 29 | 25, 28 | imbi12d 344 | . . . . . . 7
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡)) ↔ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍)))) | 
| 30 |  | simpr1 1194 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → 𝑆 ∈ 𝑇) | 
| 31 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ (𝑟 = 𝑆 → (𝑟 ∈ 𝑇 ↔ 𝑆 ∈ 𝑇)) | 
| 32 |  | neeq1 3002 | . . . . . . . . . . . 12
⊢ (𝑟 = 𝑆 → (𝑟 ≠ 𝑡 ↔ 𝑆 ≠ 𝑡)) | 
| 33 | 31, 32 | 3anbi13d 1439 | . . . . . . . . . . 11
⊢ (𝑟 = 𝑆 → ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) ↔ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡))) | 
| 34 | 33 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑟 = 𝑆 → ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) ↔ (𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)))) | 
| 35 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑟 = 𝑆 → (𝑔‘𝑟) = (𝑔‘𝑆)) | 
| 36 | 35 | neeq1d 2999 | . . . . . . . . . . 11
⊢ (𝑟 = 𝑆 → ((𝑔‘𝑟) ≠ (𝑔‘𝑡) ↔ (𝑔‘𝑆) ≠ (𝑔‘𝑡))) | 
| 37 | 36 | rexbidv 3178 | . . . . . . . . . 10
⊢ (𝑟 = 𝑆 → (∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡) ↔ ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡))) | 
| 38 | 34, 37 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑟 = 𝑆 → (((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡)) ↔ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡)))) | 
| 39 |  | stoweidlem43.12 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡)) | 
| 40 | 39 | a1i 11 | . . . . . . . . 9
⊢ (𝑟 ∈ 𝑇 → ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡))) | 
| 41 | 38, 40 | vtoclga 3576 | . . . . . . . 8
⊢ (𝑆 ∈ 𝑇 → ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡))) | 
| 42 | 30, 41 | mpcom 38 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑆 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑡)) | 
| 43 | 21, 29, 42 | vtoclg1f 3569 | . . . . . 6
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍))) | 
| 44 | 16, 43 | mpcom 38 | . . . . 5
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍)) | 
| 45 |  | df-rex 3070 | . . . . 5
⊢
(∃𝑔 ∈
𝐴 (𝑔‘𝑆) ≠ (𝑔‘𝑍) ↔ ∃𝑔(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) | 
| 46 | 44, 45 | sylib 218 | . . . 4
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑇 ∧ 𝑍 ∈ 𝑇 ∧ 𝑆 ≠ 𝑍)) → ∃𝑔(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) | 
| 47 | 15, 46 | mpdan 687 | . . 3
⊢ (𝜑 → ∃𝑔(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) | 
| 48 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑡(𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍)) | 
| 49 | 17, 48 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑡(𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) | 
| 50 |  | nfcv 2904 | . . . . 5
⊢
Ⅎ𝑡𝑔 | 
| 51 |  | eqid 2736 | . . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) | 
| 52 |  | stoweidlem43.4 | . . . . . . 7
⊢ 𝐾 = (topGen‘ran
(,)) | 
| 53 |  | eqid 2736 | . . . . . . 7
⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) | 
| 54 |  | stoweidlem43.8 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) | 
| 55 | 54 | sselda 3982 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾)) | 
| 56 | 52, 9, 53, 55 | fcnre 45035 | . . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | 
| 57 | 56 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | 
| 58 |  | stoweidlem43.9 | . . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑙‘𝑡))) ∈ 𝐴) | 
| 59 | 58 | 3adant1r 1177 | . . . . 5
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑙‘𝑡))) ∈ 𝐴) | 
| 60 |  | stoweidlem43.11 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | 
| 61 | 60 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | 
| 62 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → 𝑆 ∈ 𝑇) | 
| 63 | 10 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → 𝑍 ∈ 𝑇) | 
| 64 |  | simprl 770 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → 𝑔 ∈ 𝐴) | 
| 65 |  | simprr 772 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → (𝑔‘𝑆) ≠ (𝑔‘𝑍)) | 
| 66 | 49, 50, 51, 57, 59, 61, 62, 63, 64, 65 | stoweidlem23 46043 | . . . 4
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0)) | 
| 67 |  | eleq1 2828 | . . . . . . . 8
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → (𝑓 ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴)) | 
| 68 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → (𝑓‘𝑆) = ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆)) | 
| 69 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → (𝑓‘𝑍) = ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍)) | 
| 70 | 68, 69 | neeq12d 3001 | . . . . . . . 8
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → ((𝑓‘𝑆) ≠ (𝑓‘𝑍) ↔ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍))) | 
| 71 | 69 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → ((𝑓‘𝑍) = 0 ↔ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0)) | 
| 72 | 67, 70, 71 | 3anbi123d 1437 | . . . . . . 7
⊢ (𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) → ((𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) ↔ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0))) | 
| 73 | 72 | spcegv 3596 | . . . . . 6
⊢ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 → (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0))) | 
| 74 | 73 | 3ad2ant1 1133 | . . . . 5
⊢ (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0))) | 
| 75 | 74 | pm2.43i 52 | . . . 4
⊢ (((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍))) ∈ 𝐴 ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑆) ≠ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) ∧ ((𝑡 ∈ 𝑇 ↦ ((𝑔‘𝑡) − (𝑔‘𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) | 
| 76 | 66, 75 | syl 17 | . . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐴 ∧ (𝑔‘𝑆) ≠ (𝑔‘𝑍))) → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) | 
| 77 | 1, 2, 47, 76 | exlimdd 2219 | . 2
⊢ (𝜑 → ∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) | 
| 78 |  | stoweidlem43.3 | . . . . 5
⊢
Ⅎℎ𝑄 | 
| 79 |  | nfmpt1 5249 | . . . . 5
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ (((𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠)))‘𝑡) / sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ))) | 
| 80 |  | nfcv 2904 | . . . . 5
⊢
Ⅎ𝑡𝑓 | 
| 81 |  | nfcv 2904 | . . . . 5
⊢
Ⅎ𝑡(𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))) | 
| 82 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑡(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) | 
| 83 | 17, 82 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑡(𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) | 
| 84 |  | stoweidlem43.5 | . . . . 5
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | 
| 85 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑠 = 𝑡 → (𝑓‘𝑠) = (𝑓‘𝑡)) | 
| 86 | 85, 85 | oveq12d 7450 | . . . . . 6
⊢ (𝑠 = 𝑡 → ((𝑓‘𝑠) · (𝑓‘𝑠)) = ((𝑓‘𝑡) · (𝑓‘𝑡))) | 
| 87 | 86 | cbvmptv 5254 | . . . . 5
⊢ (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))) = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑓‘𝑡))) | 
| 88 |  | eqid 2736 | . . . . 5
⊢ sup(ran
(𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ) = sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ) | 
| 89 |  | eqid 2736 | . . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ (((𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠)))‘𝑡) / sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ))) = (𝑡 ∈ 𝑇 ↦ (((𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠)))‘𝑡) / sup(ran (𝑠 ∈ 𝑇 ↦ ((𝑓‘𝑠) · (𝑓‘𝑠))), ℝ, < ))) | 
| 90 |  | stoweidlem43.7 | . . . . . 6
⊢ (𝜑 → 𝐽 ∈ Comp) | 
| 91 | 90 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝐽 ∈ Comp) | 
| 92 | 54 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝐴 ⊆ (𝐽 Cn 𝐾)) | 
| 93 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑓 = 𝑘 → (𝑓 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | 
| 94 | 93 | 3anbi2d 1442 | . . . . . . . 8
⊢ (𝑓 = 𝑘 → ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴))) | 
| 95 |  | fveq1 6904 | . . . . . . . . . . 11
⊢ (𝑓 = 𝑘 → (𝑓‘𝑡) = (𝑘‘𝑡)) | 
| 96 | 95 | oveq1d 7447 | . . . . . . . . . 10
⊢ (𝑓 = 𝑘 → ((𝑓‘𝑡) · (𝑙‘𝑡)) = ((𝑘‘𝑡) · (𝑙‘𝑡))) | 
| 97 | 96 | mpteq2dv 5243 | . . . . . . . . 9
⊢ (𝑓 = 𝑘 → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡)))) | 
| 98 | 97 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑓 = 𝑘 → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴)) | 
| 99 | 94, 98 | imbi12d 344 | . . . . . . 7
⊢ (𝑓 = 𝑘 → (((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴))) | 
| 100 |  | stoweidlem43.10 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) | 
| 101 | 99, 100 | chvarvv 1997 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) | 
| 102 | 101 | 3adant1r 1177 | . . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) ∧ 𝑘 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑘‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) | 
| 103 | 60 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | 
| 104 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝑆 ∈ 𝑇) | 
| 105 | 10 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝑍 ∈ 𝑇) | 
| 106 |  | simpr1 1194 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → 𝑓 ∈ 𝐴) | 
| 107 |  | simpr2 1195 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → (𝑓‘𝑆) ≠ (𝑓‘𝑍)) | 
| 108 |  | simpr3 1196 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → (𝑓‘𝑍) = 0) | 
| 109 | 78, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108 | stoweidlem36 46056 | . . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0)) → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) | 
| 110 | 109 | ex 412 | . . 3
⊢ (𝜑 → ((𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆)))) | 
| 111 | 110 | exlimdv 1932 | . 2
⊢ (𝜑 → (∃𝑓(𝑓 ∈ 𝐴 ∧ (𝑓‘𝑆) ≠ (𝑓‘𝑍) ∧ (𝑓‘𝑍) = 0) → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆)))) | 
| 112 | 77, 111 | mpd 15 | 1
⊢ (𝜑 → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) |