Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem43 Structured version   Visualization version   GIF version

Theorem stoweidlem43 46039
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem43.1 𝑔𝜑
stoweidlem43.2 𝑡𝜑
stoweidlem43.3 𝑄
stoweidlem43.4 𝐾 = (topGen‘ran (,))
stoweidlem43.5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem43.6 𝑇 = 𝐽
stoweidlem43.7 (𝜑𝐽 ∈ Comp)
stoweidlem43.8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem43.9 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.10 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem43.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
stoweidlem43.13 (𝜑𝑈𝐽)
stoweidlem43.14 (𝜑𝑍𝑈)
stoweidlem43.15 (𝜑𝑆 ∈ (𝑇𝑈))
Assertion
Ref Expression
stoweidlem43 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑙,𝑡,𝐴   𝑓,,𝑇,𝑡   𝑇,𝑙   𝑓,𝑟,𝑔,𝑡,𝐴   𝑥,𝑓,𝑔,𝑡,𝐴   𝑄,𝑓   𝑆,𝑓,𝑔,𝑙,𝑡   𝑓,𝑍,𝑔,𝑙,𝑡   𝜑,𝑓,𝑙   𝐴,   𝑆,   ,𝑍   𝑇,𝑟   𝑆,𝑟   𝜑,𝑟   𝑥,𝑇   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑄(𝑥,𝑡,𝑔,,𝑟,𝑙)   𝑇(𝑔)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝑍(𝑟)

Proof of Theorem stoweidlem43
Dummy variables 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem43.1 . . 3 𝑔𝜑
2 nfv 1914 . . 3 𝑔𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
3 stoweidlem43.15 . . . . . 6 (𝜑𝑆 ∈ (𝑇𝑈))
43eldifad 3943 . . . . 5 (𝜑𝑆𝑇)
5 stoweidlem43.14 . . . . . . 7 (𝜑𝑍𝑈)
6 stoweidlem43.13 . . . . . . 7 (𝜑𝑈𝐽)
7 elunii 4893 . . . . . . 7 ((𝑍𝑈𝑈𝐽) → 𝑍 𝐽)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝑍 𝐽)
9 stoweidlem43.6 . . . . . 6 𝑇 = 𝐽
108, 9eleqtrrdi 2846 . . . . 5 (𝜑𝑍𝑇)
113eldifbd 3944 . . . . . . 7 (𝜑 → ¬ 𝑆𝑈)
12 nelne2 3031 . . . . . . 7 ((𝑍𝑈 ∧ ¬ 𝑆𝑈) → 𝑍𝑆)
135, 11, 12syl2anc 584 . . . . . 6 (𝜑𝑍𝑆)
1413necomd 2988 . . . . 5 (𝜑𝑆𝑍)
154, 10, 143jca 1128 . . . 4 (𝜑 → (𝑆𝑇𝑍𝑇𝑆𝑍))
16 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → 𝑍𝑇)
17 stoweidlem43.2 . . . . . . . . 9 𝑡𝜑
18 nfv 1914 . . . . . . . . 9 𝑡(𝑆𝑇𝑍𝑇𝑆𝑍)
1917, 18nfan 1899 . . . . . . . 8 𝑡(𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))
20 nfv 1914 . . . . . . . 8 𝑡𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)
2119, 20nfim 1896 . . . . . . 7 𝑡((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
22 eleq1 2823 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑡𝑇𝑍𝑇))
23 neeq2 2996 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑆𝑡𝑆𝑍))
2422, 233anbi23d 1441 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑆𝑇𝑡𝑇𝑆𝑡) ↔ (𝑆𝑇𝑍𝑇𝑆𝑍)))
2524anbi2d 630 . . . . . . . 8 (𝑡 = 𝑍 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))))
26 fveq2 6881 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑔𝑡) = (𝑔𝑍))
2726neeq2d 2993 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑔𝑆) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑍)))
2827rexbidv 3165 . . . . . . . 8 (𝑡 = 𝑍 → (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
2925, 28imbi12d 344 . . . . . . 7 (𝑡 = 𝑍 → (((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))))
30 simpr1 1195 . . . . . . . 8 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → 𝑆𝑇)
31 eleq1 2823 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑇𝑆𝑇))
32 neeq1 2995 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑡𝑆𝑡))
3331, 323anbi13d 1440 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑟𝑇𝑡𝑇𝑟𝑡) ↔ (𝑆𝑇𝑡𝑇𝑆𝑡)))
3433anbi2d 630 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡))))
35 fveq2 6881 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑔𝑟) = (𝑔𝑆))
3635neeq1d 2992 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑔𝑟) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑡)))
3736rexbidv 3165 . . . . . . . . . 10 (𝑟 = 𝑆 → (∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
3834, 37imbi12d 344 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))))
39 stoweidlem43.12 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
4039a1i 11 . . . . . . . . 9 (𝑟𝑇 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)))
4138, 40vtoclga 3561 . . . . . . . 8 (𝑆𝑇 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
4230, 41mpcom 38 . . . . . . 7 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))
4321, 29, 42vtoclg1f 3554 . . . . . 6 (𝑍𝑇 → ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
4416, 43mpcom 38 . . . . 5 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
45 df-rex 3062 . . . . 5 (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍) ↔ ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4644, 45sylib 218 . . . 4 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4715, 46mpdan 687 . . 3 (𝜑 → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
48 nfv 1914 . . . . . 6 𝑡(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))
4917, 48nfan 1899 . . . . 5 𝑡(𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
50 nfcv 2899 . . . . 5 𝑡𝑔
51 eqid 2736 . . . . 5 (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))
52 stoweidlem43.4 . . . . . . 7 𝐾 = (topGen‘ran (,))
53 eqid 2736 . . . . . . 7 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
54 stoweidlem43.8 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
5554sselda 3963 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
5652, 9, 53, 55fcnre 45016 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756adantlr 715 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 stoweidlem43.9 . . . . . 6 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
59583adant1r 1178 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
60 stoweidlem43.11 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6160adantlr 715 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
624adantr 480 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑆𝑇)
6310adantr 480 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑍𝑇)
64 simprl 770 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑔𝐴)
65 simprr 772 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → (𝑔𝑆) ≠ (𝑔𝑍))
6649, 50, 51, 57, 59, 61, 62, 63, 64, 65stoweidlem23 46019 . . . 4 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
67 eleq1 2823 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝐴 ↔ (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴))
68 fveq1 6880 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑆) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆))
69 fveq1 6880 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑍) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍))
7068, 69neeq12d 2994 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑆) ≠ (𝑓𝑍) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍)))
7169eqeq1d 2738 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑍) = 0 ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
7267, 70, 713anbi123d 1438 . . . . . . 7 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0)))
7372spcegv 3581 . . . . . 6 ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
74733ad2ant1 1133 . . . . 5 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
7574pm2.43i 52 . . . 4 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
7666, 75syl 17 . . 3 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
771, 2, 47, 76exlimdd 2221 . 2 (𝜑 → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
78 stoweidlem43.3 . . . . 5 𝑄
79 nfmpt1 5225 . . . . 5 𝑡(𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
80 nfcv 2899 . . . . 5 𝑡𝑓
81 nfcv 2899 . . . . 5 𝑡(𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))
82 nfv 1914 . . . . . 6 𝑡(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
8317, 82nfan 1899 . . . . 5 𝑡(𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
84 stoweidlem43.5 . . . . 5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
85 fveq2 6881 . . . . . . 7 (𝑠 = 𝑡 → (𝑓𝑠) = (𝑓𝑡))
8685, 85oveq12d 7428 . . . . . 6 (𝑠 = 𝑡 → ((𝑓𝑠) · (𝑓𝑠)) = ((𝑓𝑡) · (𝑓𝑡)))
8786cbvmptv 5230 . . . . 5 (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑓𝑡)))
88 eqid 2736 . . . . 5 sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ) = sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )
89 eqid 2736 . . . . 5 (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ))) = (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
90 stoweidlem43.7 . . . . . 6 (𝜑𝐽 ∈ Comp)
9190adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐽 ∈ Comp)
9254adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
93 eleq1 2823 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑓𝐴𝑘𝐴))
94933anbi2d 1443 . . . . . . . 8 (𝑓 = 𝑘 → ((𝜑𝑓𝐴𝑙𝐴) ↔ (𝜑𝑘𝐴𝑙𝐴)))
95 fveq1 6880 . . . . . . . . . . 11 (𝑓 = 𝑘 → (𝑓𝑡) = (𝑘𝑡))
9695oveq1d 7425 . . . . . . . . . 10 (𝑓 = 𝑘 → ((𝑓𝑡) · (𝑙𝑡)) = ((𝑘𝑡) · (𝑙𝑡)))
9796mpteq2dv 5220 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) = (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))))
9897eleq1d 2820 . . . . . . . 8 (𝑓 = 𝑘 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴))
9994, 98imbi12d 344 . . . . . . 7 (𝑓 = 𝑘 → (((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴) ↔ ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)))
100 stoweidlem43.10 . . . . . . 7 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
10199, 100chvarvv 1989 . . . . . 6 ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
1021013adant1r 1178 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
10360adantlr 715 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1044adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑆𝑇)
10510adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑍𝑇)
106 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑓𝐴)
107 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑆) ≠ (𝑓𝑍))
108 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑍) = 0)
10978, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108stoweidlem36 46032 . . . 4 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → ∃(𝑄 ∧ 0 < (𝑆)))
110109ex 412 . . 3 (𝜑 → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
111110exlimdv 1933 . 2 (𝜑 → (∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
11277, 111mpd 15 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2884  wne 2933  wral 3052  wrex 3061  {crab 3420  cdif 3928  wss 3931   cuni 4888   class class class wbr 5124  cmpt 5206  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  supcsup 9457  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  (,)cioo 13367  topGenctg 17456   Cn ccn 23167  Compccmp 23329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266
This theorem is referenced by:  stoweidlem46  46042
  Copyright terms: Public domain W3C validator