MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpodf Structured version   Visualization version   GIF version

Theorem ovmpodf 7306
Description: Alternate deduction version of ovmpo 7310, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodf.1 (𝜑𝐴𝐶)
ovmpodf.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpodf.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpodf.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
ovmpodf.5 𝑥𝐹
ovmpodf.6 𝑥𝜓
ovmpodf.7 𝑦𝐹
ovmpodf.8 𝑦𝜓
Assertion
Ref Expression
ovmpodf (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpodf
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
2 ovmpodf.5 . . . 4 𝑥𝐹
3 nfmpo1 7234 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
42, 3nfeq 2991 . . 3 𝑥 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
5 ovmpodf.6 . . 3 𝑥𝜓
64, 5nfim 1897 . 2 𝑥(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
7 ovmpodf.1 . . . 4 (𝜑𝐴𝐶)
87elexd 3514 . . 3 (𝜑𝐴 ∈ V)
9 isset 3506 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
108, 9sylib 220 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
11 nfv 1915 . . 3 𝑦(𝜑𝑥 = 𝐴)
12 ovmpodf.7 . . . . 5 𝑦𝐹
13 nfmpo2 7235 . . . . 5 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
1412, 13nfeq 2991 . . . 4 𝑦 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
15 ovmpodf.8 . . . 4 𝑦𝜓
1614, 15nfim 1897 . . 3 𝑦(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
17 ovmpodf.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
1817elexd 3514 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
19 isset 3506 . . . 4 (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵)
2018, 19sylib 220 . . 3 ((𝜑𝑥 = 𝐴) → ∃𝑦 𝑦 = 𝐵)
21 oveq 7162 . . . . 5 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
22 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥 = 𝐴)
23 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦 = 𝐵)
2422, 23oveq12d 7174 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
257adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐴𝐶)
2622, 25eqeltrd 2913 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥𝐶)
2717adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐵𝐷)
2823, 27eqeltrd 2913 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦𝐷)
29 ovmpodf.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
30 eqid 2821 . . . . . . . . . 10 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
3130ovmpt4g 7297 . . . . . . . . 9 ((𝑥𝐶𝑦𝐷𝑅𝑉) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3226, 28, 29, 31syl3anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3324, 32eqtr3d 2858 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅)
3433eqeq2d 2832 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) ↔ (𝐴𝐹𝐵) = 𝑅))
35 ovmpodf.4 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
3634, 35sylbid 242 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) → 𝜓))
3721, 36syl5 34 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
3837expr 459 . . 3 ((𝜑𝑥 = 𝐴) → (𝑦 = 𝐵 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)))
3911, 16, 20, 38exlimimdd 2219 . 2 ((𝜑𝑥 = 𝐴) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
401, 6, 10, 39exlimdd 2220 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wnf 1784  wcel 2114  wnfc 2961  Vcvv 3494  (class class class)co 7156  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161
This theorem is referenced by:  ovmpodv  7307  ovmpodv2  7308
  Copyright terms: Public domain W3C validator