MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpodf Structured version   Visualization version   GIF version

Theorem ovmpodf 7606
Description: Alternate deduction version of ovmpo 7610, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodf.1 (𝜑𝐴𝐶)
ovmpodf.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpodf.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpodf.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
ovmpodf.5 𝑥𝐹
ovmpodf.6 𝑥𝜓
ovmpodf.7 𝑦𝐹
ovmpodf.8 𝑦𝜓
Assertion
Ref Expression
ovmpodf (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpodf
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜑
2 ovmpodf.5 . . . 4 𝑥𝐹
3 nfmpo1 7530 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
42, 3nfeq 2922 . . 3 𝑥 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
5 ovmpodf.6 . . 3 𝑥𝜓
64, 5nfim 1895 . 2 𝑥(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
7 ovmpodf.1 . . . 4 (𝜑𝐴𝐶)
87elexd 3512 . . 3 (𝜑𝐴 ∈ V)
9 isset 3502 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
108, 9sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
11 nfv 1913 . . 3 𝑦(𝜑𝑥 = 𝐴)
12 ovmpodf.7 . . . . 5 𝑦𝐹
13 nfmpo2 7531 . . . . 5 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
1412, 13nfeq 2922 . . . 4 𝑦 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
15 ovmpodf.8 . . . 4 𝑦𝜓
1614, 15nfim 1895 . . 3 𝑦(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
17 ovmpodf.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
1817elexd 3512 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
19 isset 3502 . . . 4 (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵)
2018, 19sylib 218 . . 3 ((𝜑𝑥 = 𝐴) → ∃𝑦 𝑦 = 𝐵)
21 oveq 7454 . . . . 5 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
22 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥 = 𝐴)
23 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦 = 𝐵)
2422, 23oveq12d 7466 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
257adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐴𝐶)
2622, 25eqeltrd 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥𝐶)
2717adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐵𝐷)
2823, 27eqeltrd 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦𝐷)
29 ovmpodf.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
30 eqid 2740 . . . . . . . . . 10 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
3130ovmpt4g 7597 . . . . . . . . 9 ((𝑥𝐶𝑦𝐷𝑅𝑉) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3226, 28, 29, 31syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3324, 32eqtr3d 2782 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅)
3433eqeq2d 2751 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) ↔ (𝐴𝐹𝐵) = 𝑅))
35 ovmpodf.4 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
3634, 35sylbid 240 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) → 𝜓))
3721, 36syl5 34 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
3837expr 456 . . 3 ((𝜑𝑥 = 𝐴) → (𝑦 = 𝐵 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)))
3911, 16, 20, 38exlimimdd 2220 . 2 ((𝜑𝑥 = 𝐴) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
401, 6, 10, 39exlimdd 2221 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wnf 1781  wcel 2108  wnfc 2893  Vcvv 3488  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  ovmpodv  7607  ovmpodv2  7608
  Copyright terms: Public domain W3C validator