Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem44 Structured version   Visualization version   GIF version

Theorem stoweidlem44 46040
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem44.1 𝑗𝜑
stoweidlem44.2 𝑡𝜑
stoweidlem44.3 𝐾 = (topGen‘ran (,))
stoweidlem44.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem44.5 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem44.6 (𝜑𝑀 ∈ ℕ)
stoweidlem44.7 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem44.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
stoweidlem44.9 𝑇 = 𝐽
stoweidlem44.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem44.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem44.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem44.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem44.14 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem44 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝑓,𝑗,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝑀,𝑔,𝑖,𝑡   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   ,𝑖,𝑗,𝑡,𝐺   𝐴,   𝑇,,𝑗   ,𝑍,𝑖,𝑡   𝑥,𝑗,𝑀,𝑡   𝑈,𝑗   𝑡,𝑝,𝑇   𝐴,𝑝   𝑃,𝑝   𝑈,𝑝   𝑍,𝑝   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,,𝑗,𝑝)   𝐴(𝑡,𝑖,𝑗)   𝑃(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗)   𝑄(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑖)   𝐺(𝑥,𝑝)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝑀(,𝑝)   𝑍(𝑥,𝑓,𝑔,𝑗)

Proof of Theorem stoweidlem44
StepHypRef Expression
1 stoweidlem44.2 . . . 4 𝑡𝜑
2 stoweidlem44.5 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
3 eqid 2736 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 eqid 2736 . . . 4 (𝑡𝑇 ↦ (1 / 𝑀)) = (𝑡𝑇 ↦ (1 / 𝑀))
5 stoweidlem44.6 . . . 4 (𝜑𝑀 ∈ ℕ)
65nnrecred 12296 . . . 4 (𝜑 → (1 / 𝑀) ∈ ℝ)
7 stoweidlem44.7 . . . . 5 (𝜑𝐺:(1...𝑀)⟶𝑄)
8 stoweidlem44.4 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
9 ssrab2 4060 . . . . . 6 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ⊆ 𝐴
108, 9eqsstri 4010 . . . . 5 𝑄𝐴
11 fss 6727 . . . . 5 ((𝐺:(1...𝑀)⟶𝑄𝑄𝐴) → 𝐺:(1...𝑀)⟶𝐴)
127, 10, 11sylancl 586 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝐴)
13 stoweidlem44.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
14 stoweidlem44.12 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem44.13 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
16 stoweidlem44.3 . . . . 5 𝐾 = (topGen‘ran (,))
17 stoweidlem44.9 . . . . 5 𝑇 = 𝐽
18 eqid 2736 . . . . 5 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
19 stoweidlem44.10 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
2019sselda 3963 . . . . 5 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
2116, 17, 18, 20fcnre 45016 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
221, 2, 3, 4, 5, 6, 12, 13, 14, 15, 21stoweidlem32 46028 . . 3 (𝜑𝑃𝐴)
238, 2, 5, 7, 21stoweidlem38 46034 . . . . . 6 ((𝜑𝑡𝑇) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
2423ex 412 . . . . 5 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
251, 24ralrimi 3244 . . . 4 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
26 stoweidlem44.14 . . . . 5 (𝜑𝑍𝑇)
278, 2, 5, 7, 21, 26stoweidlem37 46033 . . . 4 (𝜑 → (𝑃𝑍) = 0)
28 stoweidlem44.1 . . . . . . . . 9 𝑗𝜑
29 nfv 1914 . . . . . . . . 9 𝑗 𝑡 ∈ (𝑇𝑈)
3028, 29nfan 1899 . . . . . . . 8 𝑗(𝜑𝑡 ∈ (𝑇𝑈))
31 nfv 1914 . . . . . . . 8 𝑗0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
32 stoweidlem44.8 . . . . . . . . . 10 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
3332r19.21bi 3238 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
34 df-rex 3062 . . . . . . . . 9 (∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡) ↔ ∃𝑗(𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡)))
3533, 34sylib 218 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑗(𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡)))
366ad2antrr 726 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (1 / 𝑀) ∈ ℝ)
37 simpll 766 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝜑)
38 eldifi 4111 . . . . . . . . . . 11 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
3938ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝑡𝑇)
40 fzfid 13996 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
418, 7, 21stoweidlem15 46011 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
4241an32s 652 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
4342simp1d 1142 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
4440, 43fsumrecl 15755 . . . . . . . . . 10 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
4537, 39, 44syl2anc 584 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
465nnred 12260 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
475nngt0d 12294 . . . . . . . . . . 11 (𝜑 → 0 < 𝑀)
4846, 47recgt0d 12181 . . . . . . . . . 10 (𝜑 → 0 < (1 / 𝑀))
4948ad2antrr 726 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (1 / 𝑀))
50 0red 11243 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 ∈ ℝ)
51 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝑗 ∈ (1...𝑀))
5237, 51, 393jca 1128 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇))
53 snfi 9062 . . . . . . . . . . . . . . 15 {𝑗} ∈ Fin
5453a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → {𝑗} ∈ Fin)
55 simpl1 1192 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝜑)
56 simpl3 1194 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑡𝑇)
57 elsni 4623 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ {𝑗} → 𝑖 = 𝑗)
5857adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑖 = 𝑗)
59 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑗 ∈ (1...𝑀))
6058, 59eqeltrd 2835 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑖 ∈ (1...𝑀))
6155, 56, 60, 43syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
6254, 61fsumrecl 15755 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) ∈ ℝ)
6352, 62syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) ∈ ℝ)
6450, 63readdcld 11269 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ∈ ℝ)
65 fzfi 13995 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ Fin
66 diffi 9194 . . . . . . . . . . . . . . 15 ((1...𝑀) ∈ Fin → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
6765, 66mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
68 eldifi 4111 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((1...𝑀) ∖ {𝑗}) → 𝑖 ∈ (1...𝑀))
6968, 43sylan2 593 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
7067, 69fsumrecl 15755 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
7137, 39, 70syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
7271, 63readdcld 11269 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ∈ ℝ)
73 00id 11415 . . . . . . . . . . . 12 (0 + 0) = 0
74 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < ((𝐺𝑗)‘𝑡))
758, 7, 21stoweidlem15 46011 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (((𝐺𝑗)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑗)‘𝑡) ∧ ((𝐺𝑗)‘𝑡) ≤ 1))
7675simp1d 1142 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑡𝑇) → ((𝐺𝑗)‘𝑡) ∈ ℝ)
7737, 51, 39, 76syl21anc 837 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → ((𝐺𝑗)‘𝑡) ∈ ℝ)
7877recnd 11268 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → ((𝐺𝑗)‘𝑡) ∈ ℂ)
79 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝐺𝑖) = (𝐺𝑗))
8079fveq1d 6883 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8180sumsn 15767 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝑀) ∧ ((𝐺𝑗)‘𝑡) ∈ ℂ) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8251, 78, 81syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8374, 82breqtrrd 5152 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡))
8450, 63, 50, 83ltadd2dd 11399 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + 0) < (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
8573, 84eqbrtrrid 5160 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
86 0red 11243 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → 0 ∈ ℝ)
87703adant2 1131 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
88 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝜑)
8968adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑖 ∈ (1...𝑀))
90 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑡𝑇)
9188, 89, 90, 41syl21anc 837 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
9291simp2d 1143 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 0 ≤ ((𝐺𝑖)‘𝑡))
9367, 69, 92fsumge0 15816 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → 0 ≤ Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡))
94933adant2 1131 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → 0 ≤ Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡))
9586, 87, 62, 94leadd1dd 11856 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ≤ (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
9652, 95syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ≤ (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
9750, 64, 72, 85, 96ltletrd 11400 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
98 eldifn 4112 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) → ¬ 𝑥 ∈ {𝑗})
99 imnan 399 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((1...𝑀) ∖ {𝑗}) → ¬ 𝑥 ∈ {𝑗}) ↔ ¬ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗}))
10098, 99mpbi 230 . . . . . . . . . . . . . . 15 ¬ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗})
101 elin 3947 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) ↔ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗}))
102100, 101mtbir 323 . . . . . . . . . . . . . 14 ¬ 𝑥 ∈ (((1...𝑀) ∖ {𝑗}) ∩ {𝑗})
103102nel0 4334 . . . . . . . . . . . . 13 (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) = ∅
104103a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) = ∅)
105 undif1 4456 . . . . . . . . . . . . 13 (((1...𝑀) ∖ {𝑗}) ∪ {𝑗}) = ((1...𝑀) ∪ {𝑗})
106 snssi 4789 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → {𝑗} ⊆ (1...𝑀))
1071063ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → {𝑗} ⊆ (1...𝑀))
108 ssequn2 4169 . . . . . . . . . . . . . 14 ({𝑗} ⊆ (1...𝑀) ↔ ((1...𝑀) ∪ {𝑗}) = (1...𝑀))
109107, 108sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → ((1...𝑀) ∪ {𝑗}) = (1...𝑀))
110105, 109eqtr2id 2784 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (1...𝑀) = (((1...𝑀) ∖ {𝑗}) ∪ {𝑗}))
111 fzfid 13996 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (1...𝑀) ∈ Fin)
112433adantl2 1168 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
113112recnd 11268 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℂ)
114104, 110, 111, 113fsumsplit 15762 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
11552, 114syl 17 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
11697, 115breqtrrd 5152 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
11736, 45, 49, 116mulgt0d 11395 . . . . . . . 8 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
11830, 31, 35, 117exlimdd 2221 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
1198, 2, 5, 7, 21stoweidlem30 46026 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝑃𝑡) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
12038, 119sylan2 593 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
121118, 120breqtrrd 5152 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
122121ex 412 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇𝑈) → 0 < (𝑃𝑡)))
1231, 122ralrimi 3244 . . . 4 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
12425, 27, 1233jca 1128 . . 3 (𝜑 → (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))
125 eleq1 2823 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝐴𝑃𝐴))
126 nfmpt1 5225 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
1272, 126nfcxfr 2897 . . . . . . . . 9 𝑡𝑃
128127nfeq2 2917 . . . . . . . 8 𝑡 𝑝 = 𝑃
129 fveq1 6880 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑡) = (𝑃𝑡))
130129breq2d 5136 . . . . . . . . 9 (𝑝 = 𝑃 → (0 ≤ (𝑝𝑡) ↔ 0 ≤ (𝑃𝑡)))
131129breq1d 5134 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝𝑡) ≤ 1 ↔ (𝑃𝑡) ≤ 1))
132130, 131anbi12d 632 . . . . . . . 8 (𝑝 = 𝑃 → ((0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
133128, 132ralbid 3259 . . . . . . 7 (𝑝 = 𝑃 → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
134 fveq1 6880 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝𝑍) = (𝑃𝑍))
135134eqeq1d 2738 . . . . . . 7 (𝑝 = 𝑃 → ((𝑝𝑍) = 0 ↔ (𝑃𝑍) = 0))
136129breq2d 5136 . . . . . . . 8 (𝑝 = 𝑃 → (0 < (𝑝𝑡) ↔ 0 < (𝑃𝑡)))
137128, 136ralbid 3259 . . . . . . 7 (𝑝 = 𝑃 → (∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))
138133, 135, 1373anbi123d 1438 . . . . . 6 (𝑝 = 𝑃 → ((∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))))
139125, 138anbi12d 632 . . . . 5 (𝑝 = 𝑃 → ((𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) ↔ (𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))))
140139spcegv 3581 . . . 4 (𝑃𝐴 → ((𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))) → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))))
14122, 140syl 17 . . 3 (𝜑 → ((𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))) → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))))
14222, 124, 141mp2and 699 . 2 (𝜑 → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
143 df-rex 3062 . 2 (∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
144142, 143sylibr 234 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wral 3052  wrex 3061  {crab 3420  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   cuni 4888   class class class wbr 5124  cmpt 5206  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  cn 12245  (,)cioo 13367  ...cfz 13529  Σcsu 15707  topGenctg 17456   Cn ccn 23167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ioo 13371  df-ico 13373  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cn 23170
This theorem is referenced by:  stoweidlem53  46049
  Copyright terms: Public domain W3C validator