![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb8e | Structured version Visualization version GIF version |
Description: Substitution of variable in existential quantifier. For a version requiring disjoint variables, but fewer axioms, see sb8ev 2367. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) |
Ref | Expression |
---|---|
sb5rf.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8e | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5rf.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfs1 2482 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
3 | sbequ12 2278 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvex 2411 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∃wex 1875 Ⅎwnf 1879 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ex 1876 df-nf 1880 df-sb 2065 |
This theorem is referenced by: sbnf2OLD 2560 2sb8e 2587 sb8mo 2653 mo3OLD 2659 bnj985 31540 bj-mo3OLD 33327 sbcexf 34405 exlimddvfi 34413 pm11.58 39372 |
Copyright terms: Public domain | W3C validator |