Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8e Structured version   Visualization version   GIF version

Theorem sb8e 2538
 Description: Substitution of variable in existential quantifier. Usage of this theorem is discouraged because it depends on ax-13 2380. For a version requiring disjoint variables, but fewer axioms, see sb8ev 2364. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb8.1 𝑦𝜑
Assertion
Ref Expression
sb8e (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8e
StepHypRef Expression
1 sb8.1 . 2 𝑦𝜑
21nfs1 2507 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2251 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvex 2407 1 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  ∃wex 1782  Ⅎwnf 1786  [wsb 2070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2143  ax-11 2159  ax-12 2176  ax-13 2380 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1783  df-nf 1787  df-sb 2071 This theorem is referenced by:  2sb8e  2553  sb8mo  2622  bnj985  32468  exlimddvfi  35876  pm11.58  41513
 Copyright terms: Public domain W3C validator