| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb8e | Structured version Visualization version GIF version | ||
| Description: Substitution of variable in existential quantifier. Usage of this theorem is discouraged because it depends on ax-13 2375. For a version requiring disjoint variables, but fewer axioms, see sb8ef 2356. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb8.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| sb8e | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfs1 2491 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| 3 | sbequ12 2250 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbvex 2402 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1778 Ⅎwnf 1782 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: 2sb8e 2533 sb8mo 2599 bnj985 34943 exlimddvfi 38104 pm11.58 44381 |
| Copyright terms: Public domain | W3C validator |