| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnrfg | Structured version Visualization version GIF version | ||
| Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
| Ref | Expression |
|---|---|
| lnrfg.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| Ref | Expression |
|---|---|
| lnrfg | ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (𝑆 freeLMod 𝑎) = (𝑆 freeLMod 𝑎) | |
| 2 | eqid 2737 | . . . 4 ⊢ (Base‘(𝑆 freeLMod 𝑎)) = (Base‘(𝑆 freeLMod 𝑎)) | |
| 3 | eqid 2737 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 4 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 5 | eqid 2737 | . . . 4 ⊢ (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) | |
| 6 | fglmod 43085 | . . . . 5 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) | |
| 7 | 6 | ad3antrrr 730 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LMod) |
| 8 | vex 3484 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ V) |
| 10 | lnrfg.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 = (Scalar‘𝑀)) |
| 12 | f1oi 6886 | . . . . . . 7 ⊢ ( I ↾ 𝑎):𝑎–1-1-onto→𝑎 | |
| 13 | f1of 6848 | . . . . . . 7 ⊢ (( I ↾ 𝑎):𝑎–1-1-onto→𝑎 → ( I ↾ 𝑎):𝑎⟶𝑎) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝑎):𝑎⟶𝑎 |
| 15 | elpwi 4607 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → 𝑎 ⊆ (Base‘𝑀)) | |
| 16 | fss 6752 | . . . . . 6 ⊢ ((( I ↾ 𝑎):𝑎⟶𝑎 ∧ 𝑎 ⊆ (Base‘𝑀)) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) | |
| 17 | 14, 15, 16 | sylancr 587 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
| 18 | 17 | ad2antlr 727 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
| 19 | 1, 2, 3, 4, 5, 7, 9, 11, 18 | frlmup1 21818 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀)) |
| 20 | simpllr 776 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 ∈ LNoeR) | |
| 21 | simprl 771 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ Fin) | |
| 22 | 1 | lnrfrlm 43130 | . . . 4 ⊢ ((𝑆 ∈ LNoeR ∧ 𝑎 ∈ Fin) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
| 23 | 20, 21, 22 | syl2anc 584 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
| 24 | eqid 2737 | . . . . 5 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
| 25 | 1, 2, 3, 4, 5, 7, 9, 11, 18, 24 | frlmup3 21820 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = ((LSpan‘𝑀)‘ran ( I ↾ 𝑎))) |
| 26 | rnresi 6093 | . . . . . 6 ⊢ ran ( I ↾ 𝑎) = 𝑎 | |
| 27 | 26 | fveq2i 6909 | . . . . 5 ⊢ ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = ((LSpan‘𝑀)‘𝑎) |
| 28 | simprr 773 | . . . . 5 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)) | |
| 29 | 27, 28 | eqtrid 2789 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = (Base‘𝑀)) |
| 30 | 25, 29 | eqtrd 2777 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) |
| 31 | 3 | lnmepi 43097 | . . 3 ⊢ (((𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀) ∧ (𝑆 freeLMod 𝑎) ∈ LNoeM ∧ ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) → 𝑀 ∈ LNoeM) |
| 32 | 19, 23, 30, 31 | syl3anc 1373 | . 2 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LNoeM) |
| 33 | 3, 24 | islmodfg 43081 | . . . . 5 ⊢ (𝑀 ∈ LMod → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
| 34 | 6, 33 | syl 17 | . . . 4 ⊢ (𝑀 ∈ LFinGen → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
| 35 | 34 | ibi 267 | . . 3 ⊢ (𝑀 ∈ LFinGen → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
| 36 | 35 | adantr 480 | . 2 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
| 37 | 32, 36 | r19.29a 3162 | 1 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 𝒫 cpw 4600 ↦ cmpt 5225 I cid 5577 ran crn 5686 ↾ cres 5687 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 Fincfn 8985 Basecbs 17247 Scalarcsca 17300 ·𝑠 cvsca 17301 Σg cgsu 17485 LModclmod 20858 LSpanclspn 20969 LMHom clmhm 21018 freeLMod cfrlm 21766 LFinGenclfig 43079 LNoeMclnm 43087 LNoeRclnr 43121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-nzr 20513 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lmim 21022 df-lmic 21023 df-lbs 21074 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-uvc 21803 df-lfig 43080 df-lnm 43088 df-lnr 43122 |
| This theorem is referenced by: lnrfgtr 43132 |
| Copyright terms: Public domain | W3C validator |