![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnrfg | Structured version Visualization version GIF version |
Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
Ref | Expression |
---|---|
lnrfg.s | ⊢ 𝑆 = (Scalar‘𝑀) |
Ref | Expression |
---|---|
lnrfg | ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (𝑆 freeLMod 𝑎) = (𝑆 freeLMod 𝑎) | |
2 | eqid 2736 | . . . 4 ⊢ (Base‘(𝑆 freeLMod 𝑎)) = (Base‘(𝑆 freeLMod 𝑎)) | |
3 | eqid 2736 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
4 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
5 | eqid 2736 | . . . 4 ⊢ (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) | |
6 | fglmod 41386 | . . . . 5 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) | |
7 | 6 | ad3antrrr 728 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LMod) |
8 | vex 3449 | . . . . 5 ⊢ 𝑎 ∈ V | |
9 | 8 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ V) |
10 | lnrfg.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑀) | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 = (Scalar‘𝑀)) |
12 | f1oi 6822 | . . . . . . 7 ⊢ ( I ↾ 𝑎):𝑎–1-1-onto→𝑎 | |
13 | f1of 6784 | . . . . . . 7 ⊢ (( I ↾ 𝑎):𝑎–1-1-onto→𝑎 → ( I ↾ 𝑎):𝑎⟶𝑎) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝑎):𝑎⟶𝑎 |
15 | elpwi 4567 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → 𝑎 ⊆ (Base‘𝑀)) | |
16 | fss 6685 | . . . . . 6 ⊢ ((( I ↾ 𝑎):𝑎⟶𝑎 ∧ 𝑎 ⊆ (Base‘𝑀)) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) | |
17 | 14, 15, 16 | sylancr 587 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
18 | 17 | ad2antlr 725 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
19 | 1, 2, 3, 4, 5, 7, 9, 11, 18 | frlmup1 21204 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀)) |
20 | simpllr 774 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 ∈ LNoeR) | |
21 | simprl 769 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ Fin) | |
22 | 1 | lnrfrlm 41431 | . . . 4 ⊢ ((𝑆 ∈ LNoeR ∧ 𝑎 ∈ Fin) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
23 | 20, 21, 22 | syl2anc 584 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
24 | eqid 2736 | . . . . 5 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
25 | 1, 2, 3, 4, 5, 7, 9, 11, 18, 24 | frlmup3 21206 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = ((LSpan‘𝑀)‘ran ( I ↾ 𝑎))) |
26 | rnresi 6027 | . . . . . 6 ⊢ ran ( I ↾ 𝑎) = 𝑎 | |
27 | 26 | fveq2i 6845 | . . . . 5 ⊢ ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = ((LSpan‘𝑀)‘𝑎) |
28 | simprr 771 | . . . . 5 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)) | |
29 | 27, 28 | eqtrid 2788 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = (Base‘𝑀)) |
30 | 25, 29 | eqtrd 2776 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) |
31 | 3 | lnmepi 41398 | . . 3 ⊢ (((𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀) ∧ (𝑆 freeLMod 𝑎) ∈ LNoeM ∧ ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) → 𝑀 ∈ LNoeM) |
32 | 19, 23, 30, 31 | syl3anc 1371 | . 2 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LNoeM) |
33 | 3, 24 | islmodfg 41382 | . . . . 5 ⊢ (𝑀 ∈ LMod → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
34 | 6, 33 | syl 17 | . . . 4 ⊢ (𝑀 ∈ LFinGen → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
35 | 34 | ibi 266 | . . 3 ⊢ (𝑀 ∈ LFinGen → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
36 | 35 | adantr 481 | . 2 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
37 | 32, 36 | r19.29a 3159 | 1 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 Vcvv 3445 ⊆ wss 3910 𝒫 cpw 4560 ↦ cmpt 5188 I cid 5530 ran crn 5634 ↾ cres 5635 ⟶wf 6492 –1-1-onto→wf1o 6495 ‘cfv 6496 (class class class)co 7357 ∘f cof 7615 Fincfn 8883 Basecbs 17083 Scalarcsca 17136 ·𝑠 cvsca 17137 Σg cgsu 17322 LModclmod 20322 LSpanclspn 20432 LMHom clmhm 20480 freeLMod cfrlm 21152 LFinGenclfig 41380 LNoeMclnm 41388 LNoeRclnr 41422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-lsm 19418 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lmhm 20483 df-lmim 20484 df-lmic 20485 df-lbs 20536 df-sra 20633 df-rgmod 20634 df-nzr 20728 df-dsmm 21138 df-frlm 21153 df-uvc 21189 df-lfig 41381 df-lnm 41389 df-lnr 41423 |
This theorem is referenced by: lnrfgtr 41433 |
Copyright terms: Public domain | W3C validator |