| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnrfg | Structured version Visualization version GIF version | ||
| Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
| Ref | Expression |
|---|---|
| lnrfg.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| Ref | Expression |
|---|---|
| lnrfg | ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (𝑆 freeLMod 𝑎) = (𝑆 freeLMod 𝑎) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘(𝑆 freeLMod 𝑎)) = (Base‘(𝑆 freeLMod 𝑎)) | |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 4 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 5 | eqid 2731 | . . . 4 ⊢ (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) | |
| 6 | fglmod 43176 | . . . . 5 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) | |
| 7 | 6 | ad3antrrr 730 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LMod) |
| 8 | vex 3440 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ V) |
| 10 | lnrfg.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 = (Scalar‘𝑀)) |
| 12 | f1oi 6801 | . . . . . . 7 ⊢ ( I ↾ 𝑎):𝑎–1-1-onto→𝑎 | |
| 13 | f1of 6763 | . . . . . . 7 ⊢ (( I ↾ 𝑎):𝑎–1-1-onto→𝑎 → ( I ↾ 𝑎):𝑎⟶𝑎) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝑎):𝑎⟶𝑎 |
| 15 | elpwi 4554 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → 𝑎 ⊆ (Base‘𝑀)) | |
| 16 | fss 6667 | . . . . . 6 ⊢ ((( I ↾ 𝑎):𝑎⟶𝑎 ∧ 𝑎 ⊆ (Base‘𝑀)) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) | |
| 17 | 14, 15, 16 | sylancr 587 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
| 18 | 17 | ad2antlr 727 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
| 19 | 1, 2, 3, 4, 5, 7, 9, 11, 18 | frlmup1 21735 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀)) |
| 20 | simpllr 775 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 ∈ LNoeR) | |
| 21 | simprl 770 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ Fin) | |
| 22 | 1 | lnrfrlm 43221 | . . . 4 ⊢ ((𝑆 ∈ LNoeR ∧ 𝑎 ∈ Fin) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
| 23 | 20, 21, 22 | syl2anc 584 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
| 24 | eqid 2731 | . . . . 5 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
| 25 | 1, 2, 3, 4, 5, 7, 9, 11, 18, 24 | frlmup3 21737 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = ((LSpan‘𝑀)‘ran ( I ↾ 𝑎))) |
| 26 | rnresi 6023 | . . . . . 6 ⊢ ran ( I ↾ 𝑎) = 𝑎 | |
| 27 | 26 | fveq2i 6825 | . . . . 5 ⊢ ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = ((LSpan‘𝑀)‘𝑎) |
| 28 | simprr 772 | . . . . 5 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)) | |
| 29 | 27, 28 | eqtrid 2778 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = (Base‘𝑀)) |
| 30 | 25, 29 | eqtrd 2766 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) |
| 31 | 3 | lnmepi 43188 | . . 3 ⊢ (((𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀) ∧ (𝑆 freeLMod 𝑎) ∈ LNoeM ∧ ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) → 𝑀 ∈ LNoeM) |
| 32 | 19, 23, 30, 31 | syl3anc 1373 | . 2 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LNoeM) |
| 33 | 3, 24 | islmodfg 43172 | . . . . 5 ⊢ (𝑀 ∈ LMod → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
| 34 | 6, 33 | syl 17 | . . . 4 ⊢ (𝑀 ∈ LFinGen → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
| 35 | 34 | ibi 267 | . . 3 ⊢ (𝑀 ∈ LFinGen → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
| 36 | 35 | adantr 480 | . 2 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
| 37 | 32, 36 | r19.29a 3140 | 1 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ↦ cmpt 5170 I cid 5508 ran crn 5615 ↾ cres 5616 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Fincfn 8869 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 Σg cgsu 17344 LModclmod 20793 LSpanclspn 20904 LMHom clmhm 20953 freeLMod cfrlm 21683 LFinGenclfig 43170 LNoeMclnm 43178 LNoeRclnr 43212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-nzr 20428 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lmhm 20956 df-lmim 20957 df-lmic 20958 df-lbs 21009 df-sra 21107 df-rgmod 21108 df-dsmm 21669 df-frlm 21684 df-uvc 21720 df-lfig 43171 df-lnm 43179 df-lnr 43213 |
| This theorem is referenced by: lnrfgtr 43223 |
| Copyright terms: Public domain | W3C validator |