| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnrfg | Structured version Visualization version GIF version | ||
| Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
| Ref | Expression |
|---|---|
| lnrfg.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| Ref | Expression |
|---|---|
| lnrfg | ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝑆 freeLMod 𝑎) = (𝑆 freeLMod 𝑎) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘(𝑆 freeLMod 𝑎)) = (Base‘(𝑆 freeLMod 𝑎)) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 4 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 5 | eqid 2729 | . . . 4 ⊢ (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) | |
| 6 | fglmod 43056 | . . . . 5 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) | |
| 7 | 6 | ad3antrrr 730 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LMod) |
| 8 | vex 3440 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ V) |
| 10 | lnrfg.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 = (Scalar‘𝑀)) |
| 12 | f1oi 6802 | . . . . . . 7 ⊢ ( I ↾ 𝑎):𝑎–1-1-onto→𝑎 | |
| 13 | f1of 6764 | . . . . . . 7 ⊢ (( I ↾ 𝑎):𝑎–1-1-onto→𝑎 → ( I ↾ 𝑎):𝑎⟶𝑎) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝑎):𝑎⟶𝑎 |
| 15 | elpwi 4558 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → 𝑎 ⊆ (Base‘𝑀)) | |
| 16 | fss 6668 | . . . . . 6 ⊢ ((( I ↾ 𝑎):𝑎⟶𝑎 ∧ 𝑎 ⊆ (Base‘𝑀)) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) | |
| 17 | 14, 15, 16 | sylancr 587 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 (Base‘𝑀) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
| 18 | 17 | ad2antlr 727 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀)) |
| 19 | 1, 2, 3, 4, 5, 7, 9, 11, 18 | frlmup1 21705 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀)) |
| 20 | simpllr 775 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 ∈ LNoeR) | |
| 21 | simprl 770 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ Fin) | |
| 22 | 1 | lnrfrlm 43101 | . . . 4 ⊢ ((𝑆 ∈ LNoeR ∧ 𝑎 ∈ Fin) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
| 23 | 20, 21, 22 | syl2anc 584 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑆 freeLMod 𝑎) ∈ LNoeM) |
| 24 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
| 25 | 1, 2, 3, 4, 5, 7, 9, 11, 18, 24 | frlmup3 21707 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = ((LSpan‘𝑀)‘ran ( I ↾ 𝑎))) |
| 26 | rnresi 6026 | . . . . . 6 ⊢ ran ( I ↾ 𝑎) = 𝑎 | |
| 27 | 26 | fveq2i 6825 | . . . . 5 ⊢ ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = ((LSpan‘𝑀)‘𝑎) |
| 28 | simprr 772 | . . . . 5 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)) | |
| 29 | 27, 28 | eqtrid 2776 | . . . 4 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = (Base‘𝑀)) |
| 30 | 25, 29 | eqtrd 2764 | . . 3 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) |
| 31 | 3 | lnmepi 43068 | . . 3 ⊢ (((𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀) ∧ (𝑆 freeLMod 𝑎) ∈ LNoeM ∧ ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏 ∘f ( ·𝑠 ‘𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) → 𝑀 ∈ LNoeM) |
| 32 | 19, 23, 30, 31 | syl3anc 1373 | . 2 ⊢ ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LNoeM) |
| 33 | 3, 24 | islmodfg 43052 | . . . . 5 ⊢ (𝑀 ∈ LMod → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
| 34 | 6, 33 | syl 17 | . . . 4 ⊢ (𝑀 ∈ LFinGen → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))) |
| 35 | 34 | ibi 267 | . . 3 ⊢ (𝑀 ∈ LFinGen → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
| 36 | 35 | adantr 480 | . 2 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) |
| 37 | 32, 36 | r19.29a 3137 | 1 ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 𝒫 cpw 4551 ↦ cmpt 5173 I cid 5513 ran crn 5620 ↾ cres 5621 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 Fincfn 8872 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 Σg cgsu 17344 LModclmod 20763 LSpanclspn 20874 LMHom clmhm 20923 freeLMod cfrlm 21653 LFinGenclfig 43050 LNoeMclnm 43058 LNoeRclnr 43092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-nzr 20398 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lmhm 20926 df-lmim 20927 df-lmic 20928 df-lbs 20979 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 df-uvc 21690 df-lfig 43051 df-lnm 43059 df-lnr 43093 |
| This theorem is referenced by: lnrfgtr 43103 |
| Copyright terms: Public domain | W3C validator |