Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrfg Structured version   Visualization version   GIF version

Theorem lnrfg 39983
 Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.)
Hypothesis
Ref Expression
lnrfg.s 𝑆 = (Scalar‘𝑀)
Assertion
Ref Expression
lnrfg ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM)

Proof of Theorem lnrfg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . 4 (𝑆 freeLMod 𝑎) = (𝑆 freeLMod 𝑎)
2 eqid 2824 . . . 4 (Base‘(𝑆 freeLMod 𝑎)) = (Base‘(𝑆 freeLMod 𝑎))
3 eqid 2824 . . . 4 (Base‘𝑀) = (Base‘𝑀)
4 eqid 2824 . . . 4 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5 eqid 2824 . . . 4 (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏f ( ·𝑠𝑀)( I ↾ 𝑎)))) = (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏f ( ·𝑠𝑀)( I ↾ 𝑎))))
6 fglmod 39937 . . . . 5 (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)
76ad3antrrr 729 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LMod)
8 vex 3483 . . . . 5 𝑎 ∈ V
98a1i 11 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ V)
10 lnrfg.s . . . . 5 𝑆 = (Scalar‘𝑀)
1110a1i 11 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 = (Scalar‘𝑀))
12 f1oi 6643 . . . . . . 7 ( I ↾ 𝑎):𝑎1-1-onto𝑎
13 f1of 6606 . . . . . . 7 (( I ↾ 𝑎):𝑎1-1-onto𝑎 → ( I ↾ 𝑎):𝑎𝑎)
1412, 13ax-mp 5 . . . . . 6 ( I ↾ 𝑎):𝑎𝑎
15 elpwi 4531 . . . . . 6 (𝑎 ∈ 𝒫 (Base‘𝑀) → 𝑎 ⊆ (Base‘𝑀))
16 fss 6517 . . . . . 6 ((( I ↾ 𝑎):𝑎𝑎𝑎 ⊆ (Base‘𝑀)) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀))
1714, 15, 16sylancr 590 . . . . 5 (𝑎 ∈ 𝒫 (Base‘𝑀) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀))
1817ad2antlr 726 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ( I ↾ 𝑎):𝑎⟶(Base‘𝑀))
191, 2, 3, 4, 5, 7, 9, 11, 18frlmup1 20494 . . 3 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏f ( ·𝑠𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀))
20 simpllr 775 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑆 ∈ LNoeR)
21 simprl 770 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑎 ∈ Fin)
221lnrfrlm 39982 . . . 4 ((𝑆 ∈ LNoeR ∧ 𝑎 ∈ Fin) → (𝑆 freeLMod 𝑎) ∈ LNoeM)
2320, 21, 22syl2anc 587 . . 3 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → (𝑆 freeLMod 𝑎) ∈ LNoeM)
24 eqid 2824 . . . . 5 (LSpan‘𝑀) = (LSpan‘𝑀)
251, 2, 3, 4, 5, 7, 9, 11, 18, 24frlmup3 20496 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏f ( ·𝑠𝑀)( I ↾ 𝑎)))) = ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)))
26 rnresi 5930 . . . . . 6 ran ( I ↾ 𝑎) = 𝑎
2726fveq2i 6664 . . . . 5 ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = ((LSpan‘𝑀)‘𝑎)
28 simprr 772 . . . . 5 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))
2927, 28syl5eq 2871 . . . 4 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ((LSpan‘𝑀)‘ran ( I ↾ 𝑎)) = (Base‘𝑀))
3025, 29eqtrd 2859 . . 3 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏f ( ·𝑠𝑀)( I ↾ 𝑎)))) = (Base‘𝑀))
313lnmepi 39949 . . 3 (((𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏f ( ·𝑠𝑀)( I ↾ 𝑎)))) ∈ ((𝑆 freeLMod 𝑎) LMHom 𝑀) ∧ (𝑆 freeLMod 𝑎) ∈ LNoeM ∧ ran (𝑏 ∈ (Base‘(𝑆 freeLMod 𝑎)) ↦ (𝑀 Σg (𝑏f ( ·𝑠𝑀)( I ↾ 𝑎)))) = (Base‘𝑀)) → 𝑀 ∈ LNoeM)
3219, 23, 30, 31syl3anc 1368 . 2 ((((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) ∧ 𝑎 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))) → 𝑀 ∈ LNoeM)
333, 24islmodfg 39933 . . . . 5 (𝑀 ∈ LMod → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))))
346, 33syl 17 . . . 4 (𝑀 ∈ LFinGen → (𝑀 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀))))
3534ibi 270 . . 3 (𝑀 ∈ LFinGen → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))
3635adantr 484 . 2 ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → ∃𝑎 ∈ 𝒫 (Base‘𝑀)(𝑎 ∈ Fin ∧ ((LSpan‘𝑀)‘𝑎) = (Base‘𝑀)))
3732, 36r19.29a 3281 1 ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∃wrex 3134  Vcvv 3480   ⊆ wss 3919  𝒫 cpw 4522   ↦ cmpt 5132   I cid 5446  ran crn 5543   ↾ cres 5544  ⟶wf 6339  –1-1-onto→wf1o 6342  ‘cfv 6343  (class class class)co 7149   ∘f cof 7401  Fincfn 8505  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569   Σg cgsu 16714  LModclmod 19634  LSpanclspn 19743   LMHom clmhm 19791   freeLMod cfrlm 20442  LFinGenclfig 39931  LNoeMclnm 39939  LNoeRclnr 39973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-fzo 13038  df-seq 13374  df-hash 13696  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lmim 19795  df-lmic 19796  df-lbs 19847  df-sra 19944  df-rgmod 19945  df-nzr 20031  df-dsmm 20428  df-frlm 20443  df-uvc 20479  df-lfig 39932  df-lnm 39940  df-lnr 39974 This theorem is referenced by:  lnrfgtr  39984
 Copyright terms: Public domain W3C validator