Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfgi | Structured version Visualization version GIF version |
Description: Finitely spanned subspaces are finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islssfgi.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islssfgi.v | ⊢ 𝑉 = (Base‘𝑊) |
islssfgi.x | ⊢ 𝑋 = (𝑊 ↾s (𝑁‘𝐵)) |
Ref | Expression |
---|---|
islssfgi | ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝑋 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islssfgi.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6665 | . . . . . . 7 ⊢ 𝑉 ∈ V |
3 | 2 | elpw2 5208 | . . . . . 6 ⊢ (𝐵 ∈ 𝒫 𝑉 ↔ 𝐵 ⊆ 𝑉) |
4 | 3 | biimpri 231 | . . . . 5 ⊢ (𝐵 ⊆ 𝑉 → 𝐵 ∈ 𝒫 𝑉) |
5 | 4 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝐵 ∈ 𝒫 𝑉) |
6 | simp3 1136 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) | |
7 | 5, 6 | elind 4095 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝐵 ∈ (𝒫 𝑉 ∩ Fin)) |
8 | eqid 2759 | . . 3 ⊢ (𝑁‘𝐵) = (𝑁‘𝐵) | |
9 | fveqeq2 6660 | . . . 4 ⊢ (𝑎 = 𝐵 → ((𝑁‘𝑎) = (𝑁‘𝐵) ↔ (𝑁‘𝐵) = (𝑁‘𝐵))) | |
10 | 9 | rspcev 3539 | . . 3 ⊢ ((𝐵 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝑁‘𝐵) = (𝑁‘𝐵)) → ∃𝑎 ∈ (𝒫 𝑉 ∩ Fin)(𝑁‘𝑎) = (𝑁‘𝐵)) |
11 | 7, 8, 10 | sylancl 590 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → ∃𝑎 ∈ (𝒫 𝑉 ∩ Fin)(𝑁‘𝑎) = (𝑁‘𝐵)) |
12 | simp1 1134 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LMod) | |
13 | eqid 2759 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
14 | islssfgi.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
15 | 1, 13, 14 | lspcl 19801 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉) → (𝑁‘𝐵) ∈ (LSubSp‘𝑊)) |
16 | 15 | 3adant3 1130 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → (𝑁‘𝐵) ∈ (LSubSp‘𝑊)) |
17 | islssfgi.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s (𝑁‘𝐵)) | |
18 | 17, 13, 14, 1 | islssfg2 40373 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝐵) ∈ (LSubSp‘𝑊)) → (𝑋 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 𝑉 ∩ Fin)(𝑁‘𝑎) = (𝑁‘𝐵))) |
19 | 12, 16, 18 | syl2anc 588 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → (𝑋 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 𝑉 ∩ Fin)(𝑁‘𝑎) = (𝑁‘𝐵))) |
20 | 11, 19 | mpbird 260 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝑋 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∃wrex 3069 ∩ cin 3853 ⊆ wss 3854 𝒫 cpw 4487 ‘cfv 6328 (class class class)co 7143 Fincfn 8520 Basecbs 16526 ↾s cress 16527 LModclmod 19687 LSubSpclss 19756 LSpanclspn 19796 LFinGenclfig 40369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-1st 7686 df-2nd 7687 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-sca 16624 df-vsca 16625 df-0g 16758 df-mgm 17903 df-sgrp 17952 df-mnd 17963 df-grp 18157 df-minusg 18158 df-sbg 18159 df-subg 18328 df-mgp 19293 df-ur 19305 df-ring 19352 df-lmod 19689 df-lss 19757 df-lsp 19797 df-lfig 40370 |
This theorem is referenced by: lsmfgcl 40376 lmhmfgima 40386 lmhmfgsplit 40388 |
Copyright terms: Public domain | W3C validator |