Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmfgcl Structured version   Visualization version   GIF version

Theorem lsmfgcl 43047
Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lsmfgcl.u 𝑈 = (LSubSp‘𝑊)
lsmfgcl.p = (LSSum‘𝑊)
lsmfgcl.d 𝐷 = (𝑊s 𝐴)
lsmfgcl.e 𝐸 = (𝑊s 𝐵)
lsmfgcl.f 𝐹 = (𝑊s (𝐴 𝐵))
lsmfgcl.w (𝜑𝑊 ∈ LMod)
lsmfgcl.a (𝜑𝐴𝑈)
lsmfgcl.b (𝜑𝐵𝑈)
lsmfgcl.df (𝜑𝐷 ∈ LFinGen)
lsmfgcl.ef (𝜑𝐸 ∈ LFinGen)
Assertion
Ref Expression
lsmfgcl (𝜑𝐹 ∈ LFinGen)

Proof of Theorem lsmfgcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfgcl.f . 2 𝐹 = (𝑊s (𝐴 𝐵))
2 lsmfgcl.df . . . 4 (𝜑𝐷 ∈ LFinGen)
3 lsmfgcl.w . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsmfgcl.a . . . . 5 (𝜑𝐴𝑈)
5 lsmfgcl.d . . . . . 6 𝐷 = (𝑊s 𝐴)
6 lsmfgcl.u . . . . . 6 𝑈 = (LSubSp‘𝑊)
7 eqid 2729 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
8 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
95, 6, 7, 8islssfg2 43044 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑈) → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
103, 4, 9syl2anc 584 . . . 4 (𝜑 → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
112, 10mpbid 232 . . 3 (𝜑 → ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴)
12 lsmfgcl.ef . . . . . . . 8 (𝜑𝐸 ∈ LFinGen)
13 lsmfgcl.b . . . . . . . . 9 (𝜑𝐵𝑈)
14 lsmfgcl.e . . . . . . . . . 10 𝐸 = (𝑊s 𝐵)
1514, 6, 7, 8islssfg2 43044 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐵𝑈) → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
163, 13, 15syl2anc 584 . . . . . . . 8 (𝜑 → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
1712, 16mpbid 232 . . . . . . 7 (𝜑 → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
1817adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
19 inss1 4188 . . . . . . . . . . . . . . 15 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
2019sseli 3931 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ 𝒫 (Base‘𝑊))
2120elpwid 4560 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ⊆ (Base‘𝑊))
2219sseli 3931 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑊))
2322elpwid 4560 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ⊆ (Base‘𝑊))
24 lsmfgcl.p . . . . . . . . . . . . . 14 = (LSSum‘𝑊)
258, 7, 24lsmsp2 20991 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
263, 21, 23, 25syl3an 1160 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
27263expb 1120 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
2827oveq2d 7365 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))))
293adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → 𝑊 ∈ LMod)
30 unss 4141 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) ↔ (𝑎𝑏) ⊆ (Base‘𝑊))
3130biimpi 216 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3221, 23, 31syl2an 596 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3332adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ⊆ (Base‘𝑊))
34 inss2 4189 . . . . . . . . . . . . . 14 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ Fin
3534sseli 3931 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ Fin)
3634sseli 3931 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ Fin)
37 unfi 9085 . . . . . . . . . . . . 13 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
3835, 36, 37syl2an 596 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ∈ Fin)
3938adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ∈ Fin)
40 eqid 2729 . . . . . . . . . . . 12 (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏)))
417, 8, 40islssfgi 43045 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑎𝑏) ⊆ (Base‘𝑊) ∧ (𝑎𝑏) ∈ Fin) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4229, 33, 39, 41syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4328, 42eqeltrd 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
4443anassrs 467 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
45 oveq2 7357 . . . . . . . . . 10 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = (((LSpan‘𝑊)‘𝑎) 𝐵))
4645oveq2d 7365 . . . . . . . . 9 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)))
4746eleq1d 2813 . . . . . . . 8 (((LSpan‘𝑊)‘𝑏) = 𝐵 → ((𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen ↔ (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4844, 47syl5ibcom 245 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4948rexlimdva 3130 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
5018, 49mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen)
51 oveq1 7356 . . . . . . 7 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (((LSpan‘𝑊)‘𝑎) 𝐵) = (𝐴 𝐵))
5251oveq2d 7365 . . . . . 6 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) = (𝑊s (𝐴 𝐵)))
5352eleq1d 2813 . . . . 5 (((LSpan‘𝑊)‘𝑎) = 𝐴 → ((𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen ↔ (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5450, 53syl5ibcom 245 . . . 4 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5554rexlimdva 3130 . . 3 (𝜑 → (∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5611, 55mpd 15 . 2 (𝜑 → (𝑊s (𝐴 𝐵)) ∈ LFinGen)
571, 56eqeltrid 2832 1 (𝜑𝐹 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cun 3901  cin 3902  wss 3903  𝒫 cpw 4551  cfv 6482  (class class class)co 7349  Fincfn 8872  Basecbs 17120  s cress 17141  LSSumclsm 19513  LModclmod 20763  LSubSpclss 20834  LSpanclspn 20874  LFinGenclfig 43040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lfig 43041
This theorem is referenced by:  lmhmfgsplit  43059
  Copyright terms: Public domain W3C validator