Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmfgcl Structured version   Visualization version   GIF version

Theorem lsmfgcl 42735
Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lsmfgcl.u 𝑈 = (LSubSp‘𝑊)
lsmfgcl.p = (LSSum‘𝑊)
lsmfgcl.d 𝐷 = (𝑊s 𝐴)
lsmfgcl.e 𝐸 = (𝑊s 𝐵)
lsmfgcl.f 𝐹 = (𝑊s (𝐴 𝐵))
lsmfgcl.w (𝜑𝑊 ∈ LMod)
lsmfgcl.a (𝜑𝐴𝑈)
lsmfgcl.b (𝜑𝐵𝑈)
lsmfgcl.df (𝜑𝐷 ∈ LFinGen)
lsmfgcl.ef (𝜑𝐸 ∈ LFinGen)
Assertion
Ref Expression
lsmfgcl (𝜑𝐹 ∈ LFinGen)

Proof of Theorem lsmfgcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfgcl.f . 2 𝐹 = (𝑊s (𝐴 𝐵))
2 lsmfgcl.df . . . 4 (𝜑𝐷 ∈ LFinGen)
3 lsmfgcl.w . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsmfgcl.a . . . . 5 (𝜑𝐴𝑈)
5 lsmfgcl.d . . . . . 6 𝐷 = (𝑊s 𝐴)
6 lsmfgcl.u . . . . . 6 𝑈 = (LSubSp‘𝑊)
7 eqid 2726 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
8 eqid 2726 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
95, 6, 7, 8islssfg2 42732 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑈) → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
103, 4, 9syl2anc 582 . . . 4 (𝜑 → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
112, 10mpbid 231 . . 3 (𝜑 → ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴)
12 lsmfgcl.ef . . . . . . . 8 (𝜑𝐸 ∈ LFinGen)
13 lsmfgcl.b . . . . . . . . 9 (𝜑𝐵𝑈)
14 lsmfgcl.e . . . . . . . . . 10 𝐸 = (𝑊s 𝐵)
1514, 6, 7, 8islssfg2 42732 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐵𝑈) → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
163, 13, 15syl2anc 582 . . . . . . . 8 (𝜑 → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
1712, 16mpbid 231 . . . . . . 7 (𝜑 → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
1817adantr 479 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
19 inss1 4230 . . . . . . . . . . . . . . 15 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
2019sseli 3975 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ 𝒫 (Base‘𝑊))
2120elpwid 4616 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ⊆ (Base‘𝑊))
2219sseli 3975 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑊))
2322elpwid 4616 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ⊆ (Base‘𝑊))
24 lsmfgcl.p . . . . . . . . . . . . . 14 = (LSSum‘𝑊)
258, 7, 24lsmsp2 21065 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
263, 21, 23, 25syl3an 1157 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
27263expb 1117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
2827oveq2d 7440 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))))
293adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → 𝑊 ∈ LMod)
30 unss 4185 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) ↔ (𝑎𝑏) ⊆ (Base‘𝑊))
3130biimpi 215 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3221, 23, 31syl2an 594 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3332adantl 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ⊆ (Base‘𝑊))
34 inss2 4231 . . . . . . . . . . . . . 14 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ Fin
3534sseli 3975 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ Fin)
3634sseli 3975 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ Fin)
37 unfi 9210 . . . . . . . . . . . . 13 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
3835, 36, 37syl2an 594 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ∈ Fin)
3938adantl 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ∈ Fin)
40 eqid 2726 . . . . . . . . . . . 12 (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏)))
417, 8, 40islssfgi 42733 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑎𝑏) ⊆ (Base‘𝑊) ∧ (𝑎𝑏) ∈ Fin) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4229, 33, 39, 41syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4328, 42eqeltrd 2826 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
4443anassrs 466 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
45 oveq2 7432 . . . . . . . . . 10 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = (((LSpan‘𝑊)‘𝑎) 𝐵))
4645oveq2d 7440 . . . . . . . . 9 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)))
4746eleq1d 2811 . . . . . . . 8 (((LSpan‘𝑊)‘𝑏) = 𝐵 → ((𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen ↔ (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4844, 47syl5ibcom 244 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4948rexlimdva 3145 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
5018, 49mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen)
51 oveq1 7431 . . . . . . 7 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (((LSpan‘𝑊)‘𝑎) 𝐵) = (𝐴 𝐵))
5251oveq2d 7440 . . . . . 6 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) = (𝑊s (𝐴 𝐵)))
5352eleq1d 2811 . . . . 5 (((LSpan‘𝑊)‘𝑎) = 𝐴 → ((𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen ↔ (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5450, 53syl5ibcom 244 . . . 4 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5554rexlimdva 3145 . . 3 (𝜑 → (∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5611, 55mpd 15 . 2 (𝜑 → (𝑊s (𝐴 𝐵)) ∈ LFinGen)
571, 56eqeltrid 2830 1 (𝜑𝐹 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wrex 3060  cun 3945  cin 3946  wss 3947  𝒫 cpw 4607  cfv 6554  (class class class)co 7424  Fincfn 8974  Basecbs 17213  s cress 17242  LSSumclsm 19632  LModclmod 20836  LSubSpclss 20908  LSpanclspn 20948  LFinGenclfig 42728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-sca 17282  df-vsca 17283  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-cntz 19311  df-lsm 19634  df-cmn 19780  df-abl 19781  df-mgp 20118  df-ur 20165  df-ring 20218  df-lmod 20838  df-lss 20909  df-lsp 20949  df-lfig 42729
This theorem is referenced by:  lmhmfgsplit  42747
  Copyright terms: Public domain W3C validator