Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmfgcl Structured version   Visualization version   GIF version

Theorem lsmfgcl 40815
Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lsmfgcl.u 𝑈 = (LSubSp‘𝑊)
lsmfgcl.p = (LSSum‘𝑊)
lsmfgcl.d 𝐷 = (𝑊s 𝐴)
lsmfgcl.e 𝐸 = (𝑊s 𝐵)
lsmfgcl.f 𝐹 = (𝑊s (𝐴 𝐵))
lsmfgcl.w (𝜑𝑊 ∈ LMod)
lsmfgcl.a (𝜑𝐴𝑈)
lsmfgcl.b (𝜑𝐵𝑈)
lsmfgcl.df (𝜑𝐷 ∈ LFinGen)
lsmfgcl.ef (𝜑𝐸 ∈ LFinGen)
Assertion
Ref Expression
lsmfgcl (𝜑𝐹 ∈ LFinGen)

Proof of Theorem lsmfgcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfgcl.f . 2 𝐹 = (𝑊s (𝐴 𝐵))
2 lsmfgcl.df . . . 4 (𝜑𝐷 ∈ LFinGen)
3 lsmfgcl.w . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsmfgcl.a . . . . 5 (𝜑𝐴𝑈)
5 lsmfgcl.d . . . . . 6 𝐷 = (𝑊s 𝐴)
6 lsmfgcl.u . . . . . 6 𝑈 = (LSubSp‘𝑊)
7 eqid 2738 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
8 eqid 2738 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
95, 6, 7, 8islssfg2 40812 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑈) → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
103, 4, 9syl2anc 583 . . . 4 (𝜑 → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
112, 10mpbid 231 . . 3 (𝜑 → ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴)
12 lsmfgcl.ef . . . . . . . 8 (𝜑𝐸 ∈ LFinGen)
13 lsmfgcl.b . . . . . . . . 9 (𝜑𝐵𝑈)
14 lsmfgcl.e . . . . . . . . . 10 𝐸 = (𝑊s 𝐵)
1514, 6, 7, 8islssfg2 40812 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐵𝑈) → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
163, 13, 15syl2anc 583 . . . . . . . 8 (𝜑 → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
1712, 16mpbid 231 . . . . . . 7 (𝜑 → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
1817adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
19 inss1 4159 . . . . . . . . . . . . . . 15 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
2019sseli 3913 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ 𝒫 (Base‘𝑊))
2120elpwid 4541 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ⊆ (Base‘𝑊))
2219sseli 3913 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑊))
2322elpwid 4541 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ⊆ (Base‘𝑊))
24 lsmfgcl.p . . . . . . . . . . . . . 14 = (LSSum‘𝑊)
258, 7, 24lsmsp2 20264 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
263, 21, 23, 25syl3an 1158 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
27263expb 1118 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
2827oveq2d 7271 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))))
293adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → 𝑊 ∈ LMod)
30 unss 4114 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) ↔ (𝑎𝑏) ⊆ (Base‘𝑊))
3130biimpi 215 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3221, 23, 31syl2an 595 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3332adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ⊆ (Base‘𝑊))
34 inss2 4160 . . . . . . . . . . . . . 14 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ Fin
3534sseli 3913 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ Fin)
3634sseli 3913 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ Fin)
37 unfi 8917 . . . . . . . . . . . . 13 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
3835, 36, 37syl2an 595 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ∈ Fin)
3938adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ∈ Fin)
40 eqid 2738 . . . . . . . . . . . 12 (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏)))
417, 8, 40islssfgi 40813 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑎𝑏) ⊆ (Base‘𝑊) ∧ (𝑎𝑏) ∈ Fin) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4229, 33, 39, 41syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4328, 42eqeltrd 2839 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
4443anassrs 467 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
45 oveq2 7263 . . . . . . . . . 10 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = (((LSpan‘𝑊)‘𝑎) 𝐵))
4645oveq2d 7271 . . . . . . . . 9 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)))
4746eleq1d 2823 . . . . . . . 8 (((LSpan‘𝑊)‘𝑏) = 𝐵 → ((𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen ↔ (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4844, 47syl5ibcom 244 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4948rexlimdva 3212 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
5018, 49mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen)
51 oveq1 7262 . . . . . . 7 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (((LSpan‘𝑊)‘𝑎) 𝐵) = (𝐴 𝐵))
5251oveq2d 7271 . . . . . 6 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) = (𝑊s (𝐴 𝐵)))
5352eleq1d 2823 . . . . 5 (((LSpan‘𝑊)‘𝑎) = 𝐴 → ((𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen ↔ (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5450, 53syl5ibcom 244 . . . 4 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5554rexlimdva 3212 . . 3 (𝜑 → (∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5611, 55mpd 15 . 2 (𝜑 → (𝑊s (𝐴 𝐵)) ∈ LFinGen)
571, 56eqeltrid 2843 1 (𝜑𝐹 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cun 3881  cin 3882  wss 3883  𝒫 cpw 4530  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  s cress 16867  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LFinGenclfig 40808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lfig 40809
This theorem is referenced by:  lmhmfgsplit  40827
  Copyright terms: Public domain W3C validator