Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmfgcl Structured version   Visualization version   GIF version

Theorem lsmfgcl 43070
Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lsmfgcl.u 𝑈 = (LSubSp‘𝑊)
lsmfgcl.p = (LSSum‘𝑊)
lsmfgcl.d 𝐷 = (𝑊s 𝐴)
lsmfgcl.e 𝐸 = (𝑊s 𝐵)
lsmfgcl.f 𝐹 = (𝑊s (𝐴 𝐵))
lsmfgcl.w (𝜑𝑊 ∈ LMod)
lsmfgcl.a (𝜑𝐴𝑈)
lsmfgcl.b (𝜑𝐵𝑈)
lsmfgcl.df (𝜑𝐷 ∈ LFinGen)
lsmfgcl.ef (𝜑𝐸 ∈ LFinGen)
Assertion
Ref Expression
lsmfgcl (𝜑𝐹 ∈ LFinGen)

Proof of Theorem lsmfgcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfgcl.f . 2 𝐹 = (𝑊s (𝐴 𝐵))
2 lsmfgcl.df . . . 4 (𝜑𝐷 ∈ LFinGen)
3 lsmfgcl.w . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsmfgcl.a . . . . 5 (𝜑𝐴𝑈)
5 lsmfgcl.d . . . . . 6 𝐷 = (𝑊s 𝐴)
6 lsmfgcl.u . . . . . 6 𝑈 = (LSubSp‘𝑊)
7 eqid 2730 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
8 eqid 2730 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
95, 6, 7, 8islssfg2 43067 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑈) → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
103, 4, 9syl2anc 584 . . . 4 (𝜑 → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
112, 10mpbid 232 . . 3 (𝜑 → ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴)
12 lsmfgcl.ef . . . . . . . 8 (𝜑𝐸 ∈ LFinGen)
13 lsmfgcl.b . . . . . . . . 9 (𝜑𝐵𝑈)
14 lsmfgcl.e . . . . . . . . . 10 𝐸 = (𝑊s 𝐵)
1514, 6, 7, 8islssfg2 43067 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐵𝑈) → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
163, 13, 15syl2anc 584 . . . . . . . 8 (𝜑 → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
1712, 16mpbid 232 . . . . . . 7 (𝜑 → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
1817adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
19 inss1 4203 . . . . . . . . . . . . . . 15 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
2019sseli 3945 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ 𝒫 (Base‘𝑊))
2120elpwid 4575 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ⊆ (Base‘𝑊))
2219sseli 3945 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑊))
2322elpwid 4575 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ⊆ (Base‘𝑊))
24 lsmfgcl.p . . . . . . . . . . . . . 14 = (LSSum‘𝑊)
258, 7, 24lsmsp2 21001 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
263, 21, 23, 25syl3an 1160 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
27263expb 1120 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
2827oveq2d 7406 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))))
293adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → 𝑊 ∈ LMod)
30 unss 4156 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) ↔ (𝑎𝑏) ⊆ (Base‘𝑊))
3130biimpi 216 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3221, 23, 31syl2an 596 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3332adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ⊆ (Base‘𝑊))
34 inss2 4204 . . . . . . . . . . . . . 14 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ Fin
3534sseli 3945 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ Fin)
3634sseli 3945 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ Fin)
37 unfi 9141 . . . . . . . . . . . . 13 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
3835, 36, 37syl2an 596 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ∈ Fin)
3938adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ∈ Fin)
40 eqid 2730 . . . . . . . . . . . 12 (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏)))
417, 8, 40islssfgi 43068 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑎𝑏) ⊆ (Base‘𝑊) ∧ (𝑎𝑏) ∈ Fin) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4229, 33, 39, 41syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4328, 42eqeltrd 2829 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
4443anassrs 467 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
45 oveq2 7398 . . . . . . . . . 10 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = (((LSpan‘𝑊)‘𝑎) 𝐵))
4645oveq2d 7406 . . . . . . . . 9 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)))
4746eleq1d 2814 . . . . . . . 8 (((LSpan‘𝑊)‘𝑏) = 𝐵 → ((𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen ↔ (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4844, 47syl5ibcom 245 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4948rexlimdva 3135 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
5018, 49mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen)
51 oveq1 7397 . . . . . . 7 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (((LSpan‘𝑊)‘𝑎) 𝐵) = (𝐴 𝐵))
5251oveq2d 7406 . . . . . 6 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) = (𝑊s (𝐴 𝐵)))
5352eleq1d 2814 . . . . 5 (((LSpan‘𝑊)‘𝑎) = 𝐴 → ((𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen ↔ (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5450, 53syl5ibcom 245 . . . 4 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5554rexlimdva 3135 . . 3 (𝜑 → (∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5611, 55mpd 15 . 2 (𝜑 → (𝑊s (𝐴 𝐵)) ∈ LFinGen)
571, 56eqeltrid 2833 1 (𝜑𝐹 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cun 3915  cin 3916  wss 3917  𝒫 cpw 4566  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  s cress 17207  LSSumclsm 19571  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LFinGenclfig 43063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-sca 17243  df-vsca 17244  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lfig 43064
This theorem is referenced by:  lmhmfgsplit  43082
  Copyright terms: Public domain W3C validator