Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege100 Structured version   Visualization version   GIF version

Theorem frege100 43952
Description: One direction of dffrege99 43951. Proposition 100 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege99.z 𝑍𝑈
Assertion
Ref Expression
frege100 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))

Proof of Theorem frege100
StepHypRef Expression
1 frege99.z . . 3 𝑍𝑈
21dffrege99 43951 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege57aid 43861 . 2 (((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋)))
42, 3ax-mp 5 1 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  cun 3912   class class class wbr 5107   I cid 5532  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-frege1 43779  ax-frege2 43780  ax-frege8 43798  ax-frege52a 43846
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645
This theorem is referenced by:  frege101  43953  frege103  43955
  Copyright terms: Public domain W3C validator