Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege100 Structured version   Visualization version   GIF version

Theorem frege100 40193
Description: One direction of dffrege99 40192. Proposition 100 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege99.z 𝑍𝑈
Assertion
Ref Expression
frege100 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))

Proof of Theorem frege100
StepHypRef Expression
1 frege99.z . . 3 𝑍𝑈
21dffrege99 40192 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege57aid 40102 . 2 (((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋)))
42, 3ax-mp 5 1 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207   = wceq 1530  wcel 2107  cun 3938   class class class wbr 5063   I cid 5458  cfv 6354  t+ctcl 14340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326  ax-frege1 40020  ax-frege2 40021  ax-frege8 40039  ax-frege52a 40087
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ifp 1057  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561
This theorem is referenced by:  frege101  40194  frege103  40196
  Copyright terms: Public domain W3C validator