Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen11nv Structured version   Visualization version   GIF version

Theorem gen11nv 42126
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih 1827 is gen11nv 42126 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
gen11nv.1 (𝜑 → ∀𝑥𝜑)
gen11nv.2 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen11nv (   𝜑   ▶   𝑥𝜓   )

Proof of Theorem gen11nv
StepHypRef Expression
1 gen11nv.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 gen11nv.2 . . . 4 (   𝜑   ▶   𝜓   )
32in1 42080 . . 3 (𝜑𝜓)
41, 3alrimih 1827 . 2 (𝜑 → ∀𝑥𝜓)
54dfvd1ir 42082 1 (   𝜑   ▶   𝑥𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  (   wvd1 42078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-vd1 42079
This theorem is referenced by:  tratrbVD  42370  hbimpgVD  42413  hbalgVD  42414  hbexgVD  42415  e2ebindVD  42421
  Copyright terms: Public domain W3C validator