Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen12 Structured version   Visualization version   GIF version

Theorem gen12 43369
Description: Virtual deduction generalizing rule for two quantifying variables and one virtual hypothesis. gen12 43369 is alrimivv 1931 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen12.1 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen12 (   𝜑   ▶   𝑥𝑦𝜓   )
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem gen12
StepHypRef Expression
1 gen12.1 . . . 4 (   𝜑   ▶   𝜓   )
21in1 43322 . . 3 (𝜑𝜓)
32alrimivv 1931 . 2 (𝜑 → ∀𝑥𝑦𝜓)
43dfvd1ir 43324 1 (   𝜑   ▶   𝑥𝑦𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wal 1539  (   wvd1 43320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-vd1 43321
This theorem is referenced by:  sspwtr  43572  pwtrVD  43575  pwtrrVD  43576  suctrALT2VD  43587  truniALTVD  43629  trintALTVD  43631  suctrALTcfVD  43674
  Copyright terms: Public domain W3C validator