Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen12 Structured version   Visualization version   GIF version

Theorem gen12 42127
Description: Virtual deduction generalizing rule for two quantifying variables and one virtual hypothesis. gen12 42127 is alrimivv 1932 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen12.1 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen12 (   𝜑   ▶   𝑥𝑦𝜓   )
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem gen12
StepHypRef Expression
1 gen12.1 . . . 4 (   𝜑   ▶   𝜓   )
21in1 42080 . . 3 (𝜑𝜓)
32alrimivv 1932 . 2 (𝜑 → ∀𝑥𝑦𝜓)
43dfvd1ir 42082 1 (   𝜑   ▶   𝑥𝑦𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wal 1537  (   wvd1 42078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-vd1 42079
This theorem is referenced by:  sspwtr  42330  pwtrVD  42333  pwtrrVD  42334  suctrALT2VD  42345  truniALTVD  42387  trintALTVD  42389  suctrALTcfVD  42432
  Copyright terms: Public domain W3C validator