Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbexgVD Structured version   Visualization version   GIF version

Theorem hbexgVD 45023
Description: Virtual deduction proof of hbexg 44674. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 44674 is hbexgVD 45023 without virtual deductions and was automatically derived from hbexgVD 45023. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥(𝜑 → ∀𝑥𝜑)   )
3:2: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (𝜑 → ∀𝑥𝜑)   )
4:3: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝜑 → ∀𝑥¬ 𝜑)   )
5:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 𝑥(𝜑 → ∀𝑥𝜑))
6:: (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑦𝑥(𝜑 → ∀𝑥𝜑))
7:5: (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ 𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
8:5,6,7: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑥𝑦(𝜑 → ∀𝑥𝜑))
9:8,4: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥𝜑 → ∀𝑥¬ 𝜑)   )
10:9: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦𝜑 → ∀𝑥¬ 𝜑)   )
11:10: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝜑 → ∀𝑥¬ 𝜑)   )
12:11: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
13:12: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
14:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 𝑥𝑦(𝜑 → ∀𝑥𝜑))
15:13,14: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
16:15: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
17:16: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶    𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
18:: (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
19:17,18: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
20:18: (∀𝑥𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
21:19,20: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
22:8,21: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
23:14,22: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:23: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
Assertion
Ref Expression
hbexgVD (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem hbexgVD
StepHypRef Expression
1 hba1 2297 . . 3 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥𝑦(𝜑 → ∀𝑥𝜑))
2 hba1 2297 . . . . 5 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
3 alcom 2164 . . . . 5 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
43albii 1820 . . . . 5 (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
52, 3, 43imtr4i 292 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑))
6 idn1 44692 . . . . . . . . . . . . . . . . 17 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦(𝜑 → ∀𝑥𝜑)   )
7 ax-11 2162 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
86, 7e1a 44745 . . . . . . . . . . . . . . . 16 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝑥(𝜑 → ∀𝑥𝜑)   )
9 sp 2188 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑))
108, 9e1a 44745 . . . . . . . . . . . . . . 15 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
11 hbntal 44671 . . . . . . . . . . . . . . 15 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
1210, 11e1a 44745 . . . . . . . . . . . . . 14 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝜑 → ∀𝑥 ¬ 𝜑)   )
135, 12gen11nv 44735 . . . . . . . . . . . . 13 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝑥𝜑 → ∀𝑥 ¬ 𝜑)   )
14 ax-11 2162 . . . . . . . . . . . . 13 (∀𝑦𝑥𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑))
1513, 14e1a 44745 . . . . . . . . . . . 12 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑)   )
16 sp 2188 . . . . . . . . . . . 12 (∀𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑦𝜑 → ∀𝑥 ¬ 𝜑))
1715, 16e1a 44745 . . . . . . . . . . 11 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝜑 → ∀𝑥 ¬ 𝜑)   )
18 hbalg 44673 . . . . . . . . . . 11 (∀𝑦𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
1917, 18e1a 44745 . . . . . . . . . 10 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
20 sp 2188 . . . . . . . . . 10 (∀𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑) → (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
2119, 20e1a 44745 . . . . . . . . 9 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
221, 21gen11nv 44735 . . . . . . . 8 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
23 hbntal 44671 . . . . . . . 8 (∀𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑) → ∀𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
2422, 23e1a 44745 . . . . . . 7 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
25 sp 2188 . . . . . . 7 (∀𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
2624, 25e1a 44745 . . . . . 6 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
27 df-ex 1781 . . . . . 6 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
28 imbi1 347 . . . . . . 7 ((∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) ↔ (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
2928biimprcd 250 . . . . . 6 ((¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) → (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
3026, 27, 29e10 44812 . . . . 5 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
3127albii 1820 . . . . 5 (∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)
32 imbi2 348 . . . . . 6 ((∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 → ∀𝑥𝑦𝜑) ↔ (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
3332biimprcd 250 . . . . 5 ((∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑)))
3430, 31, 33e10 44812 . . . 4 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
355, 34gen11nv 44735 . . 3 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
361, 35gen11nv 44735 . 2 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
3736in1 44689 1 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-11 2162  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785  df-vd1 44688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator