Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbexgVD Structured version   Visualization version   GIF version

Theorem hbexgVD 42526
Description: Virtual deduction proof of hbexg 42176. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 42176 is hbexgVD 42526 without virtual deductions and was automatically derived from hbexgVD 42526. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥(𝜑 → ∀𝑥𝜑)   )
3:2: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (𝜑 → ∀𝑥𝜑)   )
4:3: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝜑 → ∀𝑥¬ 𝜑)   )
5:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 𝑥(𝜑 → ∀𝑥𝜑))
6:: (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑦𝑥(𝜑 → ∀𝑥𝜑))
7:5: (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ 𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
8:5,6,7: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑥𝑦(𝜑 → ∀𝑥𝜑))
9:8,4: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥𝜑 → ∀𝑥¬ 𝜑)   )
10:9: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦𝜑 → ∀𝑥¬ 𝜑)   )
11:10: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝜑 → ∀𝑥¬ 𝜑)   )
12:11: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
13:12: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
14:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 𝑥𝑦(𝜑 → ∀𝑥𝜑))
15:13,14: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
16:15: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
17:16: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶    𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
18:: (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
19:17,18: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
20:18: (∀𝑥𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
21:19,20: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
22:8,21: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
23:14,22: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:23: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
Assertion
Ref Expression
hbexgVD (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem hbexgVD
StepHypRef Expression
1 hba1 2290 . . 3 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥𝑦(𝜑 → ∀𝑥𝜑))
2 hba1 2290 . . . . 5 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
3 alcom 2156 . . . . 5 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
43albii 1822 . . . . 5 (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
52, 3, 43imtr4i 292 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑))
6 idn1 42194 . . . . . . . . . . . . . . . . 17 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦(𝜑 → ∀𝑥𝜑)   )
7 ax-11 2154 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
86, 7e1a 42247 . . . . . . . . . . . . . . . 16 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝑥(𝜑 → ∀𝑥𝜑)   )
9 sp 2176 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑))
108, 9e1a 42247 . . . . . . . . . . . . . . 15 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
11 hbntal 42173 . . . . . . . . . . . . . . 15 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
1210, 11e1a 42247 . . . . . . . . . . . . . 14 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝜑 → ∀𝑥 ¬ 𝜑)   )
135, 12gen11nv 42237 . . . . . . . . . . . . 13 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝑥𝜑 → ∀𝑥 ¬ 𝜑)   )
14 ax-11 2154 . . . . . . . . . . . . 13 (∀𝑦𝑥𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑))
1513, 14e1a 42247 . . . . . . . . . . . 12 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑)   )
16 sp 2176 . . . . . . . . . . . 12 (∀𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑦𝜑 → ∀𝑥 ¬ 𝜑))
1715, 16e1a 42247 . . . . . . . . . . 11 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝜑 → ∀𝑥 ¬ 𝜑)   )
18 hbalg 42175 . . . . . . . . . . 11 (∀𝑦𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
1917, 18e1a 42247 . . . . . . . . . 10 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
20 sp 2176 . . . . . . . . . 10 (∀𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑) → (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
2119, 20e1a 42247 . . . . . . . . 9 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
221, 21gen11nv 42237 . . . . . . . 8 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
23 hbntal 42173 . . . . . . . 8 (∀𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑) → ∀𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
2422, 23e1a 42247 . . . . . . 7 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
25 sp 2176 . . . . . . 7 (∀𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
2624, 25e1a 42247 . . . . . 6 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
27 df-ex 1783 . . . . . 6 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
28 imbi1 348 . . . . . . 7 ((∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) ↔ (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
2928biimprcd 249 . . . . . 6 ((¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) → (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
3026, 27, 29e10 42314 . . . . 5 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
3127albii 1822 . . . . 5 (∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)
32 imbi2 349 . . . . . 6 ((∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 → ∀𝑥𝑦𝜑) ↔ (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
3332biimprcd 249 . . . . 5 ((∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑)))
3430, 31, 33e10 42314 . . . 4 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
355, 34gen11nv 42237 . . 3 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
361, 35gen11nv 42237 . 2 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
3736in1 42191 1 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1783  df-nf 1787  df-vd1 42190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator