Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbexgVD Structured version   Visualization version   GIF version

Theorem hbexgVD 44877
Description: Virtual deduction proof of hbexg 44527. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 44527 is hbexgVD 44877 without virtual deductions and was automatically derived from hbexgVD 44877. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥(𝜑 → ∀𝑥𝜑)   )
3:2: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (𝜑 → ∀𝑥𝜑)   )
4:3: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝜑 → ∀𝑥¬ 𝜑)   )
5:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 𝑥(𝜑 → ∀𝑥𝜑))
6:: (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑦𝑥(𝜑 → ∀𝑥𝜑))
7:5: (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ 𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
8:5,6,7: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑥𝑦(𝜑 → ∀𝑥𝜑))
9:8,4: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥𝜑 → ∀𝑥¬ 𝜑)   )
10:9: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦𝜑 → ∀𝑥¬ 𝜑)   )
11:10: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝜑 → ∀𝑥¬ 𝜑)   )
12:11: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
13:12: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
14:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 𝑥𝑦(𝜑 → ∀𝑥𝜑))
15:13,14: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
16:15: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
17:16: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶    𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
18:: (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
19:17,18: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
20:18: (∀𝑥𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
21:19,20: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
22:8,21: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
23:14,22: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:23: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
Assertion
Ref Expression
hbexgVD (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem hbexgVD
StepHypRef Expression
1 hba1 2297 . . 3 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥𝑦(𝜑 → ∀𝑥𝜑))
2 hba1 2297 . . . . 5 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
3 alcom 2160 . . . . 5 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
43albii 1817 . . . . 5 (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
52, 3, 43imtr4i 292 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑))
6 idn1 44545 . . . . . . . . . . . . . . . . 17 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦(𝜑 → ∀𝑥𝜑)   )
7 ax-11 2158 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
86, 7e1a 44598 . . . . . . . . . . . . . . . 16 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝑥(𝜑 → ∀𝑥𝜑)   )
9 sp 2184 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑))
108, 9e1a 44598 . . . . . . . . . . . . . . 15 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
11 hbntal 44524 . . . . . . . . . . . . . . 15 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
1210, 11e1a 44598 . . . . . . . . . . . . . 14 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝜑 → ∀𝑥 ¬ 𝜑)   )
135, 12gen11nv 44588 . . . . . . . . . . . . 13 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝑥𝜑 → ∀𝑥 ¬ 𝜑)   )
14 ax-11 2158 . . . . . . . . . . . . 13 (∀𝑦𝑥𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑))
1513, 14e1a 44598 . . . . . . . . . . . 12 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑)   )
16 sp 2184 . . . . . . . . . . . 12 (∀𝑥𝑦𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑦𝜑 → ∀𝑥 ¬ 𝜑))
1715, 16e1a 44598 . . . . . . . . . . 11 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦𝜑 → ∀𝑥 ¬ 𝜑)   )
18 hbalg 44526 . . . . . . . . . . 11 (∀𝑦𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
1917, 18e1a 44598 . . . . . . . . . 10 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
20 sp 2184 . . . . . . . . . 10 (∀𝑦(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑) → (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
2119, 20e1a 44598 . . . . . . . . 9 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
221, 21gen11nv 44588 . . . . . . . 8 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)   )
23 hbntal 44524 . . . . . . . 8 (∀𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑) → ∀𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
2422, 23e1a 44598 . . . . . . 7 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
25 sp 2184 . . . . . . 7 (∀𝑥(¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
2624, 25e1a 44598 . . . . . 6 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
27 df-ex 1778 . . . . . 6 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
28 imbi1 347 . . . . . . 7 ((∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) ↔ (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
2928biimprcd 250 . . . . . 6 ((¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) → (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
3026, 27, 29e10 44665 . . . . 5 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)   )
3127albii 1817 . . . . 5 (∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)
32 imbi2 348 . . . . . 6 ((∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∃𝑦𝜑 → ∀𝑥𝑦𝜑) ↔ (∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)))
3332biimprcd 250 . . . . 5 ((∃𝑦𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → ((∀𝑥𝑦𝜑 ↔ ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑)))
3430, 31, 33e10 44665 . . . 4 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
355, 34gen11nv 44588 . . 3 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
361, 35gen11nv 44588 . 2 (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
3736in1 44542 1 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782  df-vd1 44541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator