| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1927 is gen11 44590 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | dfvd1imp 44549 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
| 4 | 3 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 5 | dfvd1impr 44550 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ( wvd1 44543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-vd1 44544 |
| This theorem is referenced by: trsspwALT 44791 snssiALTVD 44800 sstrALT2VD 44807 elex2VD 44811 elex22VD 44812 tpid3gVD 44815 trsbcVD 44850 sbcssgVD 44856 csbingVD 44857 onfrALTVD 44864 csbsngVD 44866 csbxpgVD 44867 csbrngVD 44869 csbunigVD 44871 csbfv12gALTVD 44872 ax6e2eqVD 44880 ax6e2ndeqVD 44882 sspwimpVD 44892 sspwimpcfVD 44894 |
| Copyright terms: Public domain | W3C validator |