![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version |
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1926 is gen11 44587 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | dfvd1imp 44546 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
4 | 3 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
5 | dfvd1impr 44547 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ( wvd1 44540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-vd1 44541 |
This theorem is referenced by: trsspwALT 44789 snssiALTVD 44798 sstrALT2VD 44805 elex2VD 44809 elex22VD 44810 tpid3gVD 44813 trsbcVD 44848 sbcssgVD 44854 csbingVD 44855 onfrALTVD 44862 csbsngVD 44864 csbxpgVD 44865 csbrngVD 44867 csbunigVD 44869 csbfv12gALTVD 44870 ax6e2eqVD 44878 ax6e2ndeqVD 44880 sspwimpVD 44890 sspwimpcfVD 44892 |
Copyright terms: Public domain | W3C validator |