Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen11 Structured version   Visualization version   GIF version

Theorem gen11 43377
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1931 is gen11 43377 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen11.1 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen11 (   𝜑   ▶   𝑥𝜓   )
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem gen11
StepHypRef Expression
1 gen11.1 . . . 4 (   𝜑   ▶   𝜓   )
2 dfvd1imp 43336 . . . 4 ((   𝜑   ▶   𝜓   ) → (𝜑𝜓))
31, 2ax-mp 5 . . 3 (𝜑𝜓)
43alrimiv 1931 . 2 (𝜑 → ∀𝑥𝜓)
5 dfvd1impr 43337 . 2 ((𝜑 → ∀𝑥𝜓) → (   𝜑   ▶   𝑥𝜓   ))
64, 5ax-mp 5 1 (   𝜑   ▶   𝑥𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  (   wvd1 43330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-vd1 43331
This theorem is referenced by:  trsspwALT  43579  snssiALTVD  43588  sstrALT2VD  43595  elex2VD  43599  elex22VD  43600  tpid3gVD  43603  trsbcVD  43638  sbcssgVD  43644  csbingVD  43645  onfrALTVD  43652  csbsngVD  43654  csbxpgVD  43655  csbrngVD  43657  csbunigVD  43659  csbfv12gALTVD  43660  ax6e2eqVD  43668  ax6e2ndeqVD  43670  sspwimpVD  43680  sspwimpcfVD  43682
  Copyright terms: Public domain W3C validator