Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen11 Structured version   Visualization version   GIF version

Theorem gen11 44657
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1928 is gen11 44657 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen11.1 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen11 (   𝜑   ▶   𝑥𝜓   )
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem gen11
StepHypRef Expression
1 gen11.1 . . . 4 (   𝜑   ▶   𝜓   )
2 dfvd1imp 44616 . . . 4 ((   𝜑   ▶   𝜓   ) → (𝜑𝜓))
31, 2ax-mp 5 . . 3 (𝜑𝜓)
43alrimiv 1928 . 2 (𝜑 → ∀𝑥𝜓)
5 dfvd1impr 44617 . 2 ((𝜑 → ∀𝑥𝜓) → (   𝜑   ▶   𝑥𝜓   ))
64, 5ax-mp 5 1 (   𝜑   ▶   𝑥𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  (   wvd1 44610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-vd1 44611
This theorem is referenced by:  trsspwALT  44858  snssiALTVD  44867  sstrALT2VD  44874  elex2VD  44878  elex22VD  44879  tpid3gVD  44882  trsbcVD  44917  sbcssgVD  44923  csbingVD  44924  onfrALTVD  44931  csbsngVD  44933  csbxpgVD  44934  csbrngVD  44936  csbunigVD  44938  csbfv12gALTVD  44939  ax6e2eqVD  44947  ax6e2ndeqVD  44949  sspwimpVD  44959  sspwimpcfVD  44961
  Copyright terms: Public domain W3C validator