Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen11 Structured version   Visualization version   GIF version

Theorem gen11 44590
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1927 is gen11 44590 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen11.1 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen11 (   𝜑   ▶   𝑥𝜓   )
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem gen11
StepHypRef Expression
1 gen11.1 . . . 4 (   𝜑   ▶   𝜓   )
2 dfvd1imp 44549 . . . 4 ((   𝜑   ▶   𝜓   ) → (𝜑𝜓))
31, 2ax-mp 5 . . 3 (𝜑𝜓)
43alrimiv 1927 . 2 (𝜑 → ∀𝑥𝜓)
5 dfvd1impr 44550 . 2 ((𝜑 → ∀𝑥𝜓) → (   𝜑   ▶   𝑥𝜓   ))
64, 5ax-mp 5 1 (   𝜑   ▶   𝑥𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  (   wvd1 44543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-vd1 44544
This theorem is referenced by:  trsspwALT  44791  snssiALTVD  44800  sstrALT2VD  44807  elex2VD  44811  elex22VD  44812  tpid3gVD  44815  trsbcVD  44850  sbcssgVD  44856  csbingVD  44857  onfrALTVD  44864  csbsngVD  44866  csbxpgVD  44867  csbrngVD  44869  csbunigVD  44871  csbfv12gALTVD  44872  ax6e2eqVD  44880  ax6e2ndeqVD  44882  sspwimpVD  44892  sspwimpcfVD  44894
  Copyright terms: Public domain W3C validator