Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen11 Structured version   Visualization version   GIF version

Theorem gen11 44613
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1927 is gen11 44613 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen11.1 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen11 (   𝜑   ▶   𝑥𝜓   )
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem gen11
StepHypRef Expression
1 gen11.1 . . . 4 (   𝜑   ▶   𝜓   )
2 dfvd1imp 44572 . . . 4 ((   𝜑   ▶   𝜓   ) → (𝜑𝜓))
31, 2ax-mp 5 . . 3 (𝜑𝜓)
43alrimiv 1927 . 2 (𝜑 → ∀𝑥𝜓)
5 dfvd1impr 44573 . 2 ((𝜑 → ∀𝑥𝜓) → (   𝜑   ▶   𝑥𝜓   ))
64, 5ax-mp 5 1 (   𝜑   ▶   𝑥𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  (   wvd1 44566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-vd1 44567
This theorem is referenced by:  trsspwALT  44814  snssiALTVD  44823  sstrALT2VD  44830  elex2VD  44834  elex22VD  44835  tpid3gVD  44838  trsbcVD  44873  sbcssgVD  44879  csbingVD  44880  onfrALTVD  44887  csbsngVD  44889  csbxpgVD  44890  csbrngVD  44892  csbunigVD  44894  csbfv12gALTVD  44895  ax6e2eqVD  44903  ax6e2ndeqVD  44905  sspwimpVD  44915  sspwimpcfVD  44917
  Copyright terms: Public domain W3C validator