| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1927 is gen11 44579 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | dfvd1imp 44538 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
| 4 | 3 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 5 | dfvd1impr 44539 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ( wvd1 44532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-vd1 44533 |
| This theorem is referenced by: trsspwALT 44780 snssiALTVD 44789 sstrALT2VD 44796 elex2VD 44800 elex22VD 44801 tpid3gVD 44804 trsbcVD 44839 sbcssgVD 44845 csbingVD 44846 onfrALTVD 44853 csbsngVD 44855 csbxpgVD 44856 csbrngVD 44858 csbunigVD 44860 csbfv12gALTVD 44861 ax6e2eqVD 44869 ax6e2ndeqVD 44871 sspwimpVD 44881 sspwimpcfVD 44883 |
| Copyright terms: Public domain | W3C validator |