| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1928 is gen11 44657 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | dfvd1imp 44616 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
| 4 | 3 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 5 | dfvd1impr 44617 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ( wvd1 44610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-vd1 44611 |
| This theorem is referenced by: trsspwALT 44858 snssiALTVD 44867 sstrALT2VD 44874 elex2VD 44878 elex22VD 44879 tpid3gVD 44882 trsbcVD 44917 sbcssgVD 44923 csbingVD 44924 onfrALTVD 44931 csbsngVD 44933 csbxpgVD 44934 csbrngVD 44936 csbunigVD 44938 csbfv12gALTVD 44939 ax6e2eqVD 44947 ax6e2ndeqVD 44949 sspwimpVD 44959 sspwimpcfVD 44961 |
| Copyright terms: Public domain | W3C validator |