![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version |
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1931 is gen11 43377 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | dfvd1imp 43336 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
4 | 3 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
5 | dfvd1impr 43337 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ( wvd1 43330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-vd1 43331 |
This theorem is referenced by: trsspwALT 43579 snssiALTVD 43588 sstrALT2VD 43595 elex2VD 43599 elex22VD 43600 tpid3gVD 43603 trsbcVD 43638 sbcssgVD 43644 csbingVD 43645 onfrALTVD 43652 csbsngVD 43654 csbxpgVD 43655 csbrngVD 43657 csbunigVD 43659 csbfv12gALTVD 43660 ax6e2eqVD 43668 ax6e2ndeqVD 43670 sspwimpVD 43680 sspwimpcfVD 43682 |
Copyright terms: Public domain | W3C validator |