| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1927 is gen11 44641 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | dfvd1imp 44600 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
| 4 | 3 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 5 | dfvd1impr 44601 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ( wvd1 44594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-vd1 44595 |
| This theorem is referenced by: trsspwALT 44842 snssiALTVD 44851 sstrALT2VD 44858 elex2VD 44862 elex22VD 44863 tpid3gVD 44866 trsbcVD 44901 sbcssgVD 44907 csbingVD 44908 onfrALTVD 44915 csbsngVD 44917 csbxpgVD 44918 csbrngVD 44920 csbunigVD 44922 csbfv12gALTVD 44923 ax6e2eqVD 44931 ax6e2ndeqVD 44933 sspwimpVD 44943 sspwimpcfVD 44945 |
| Copyright terms: Public domain | W3C validator |