| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1927 is gen11 44606 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | dfvd1imp 44565 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
| 4 | 3 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 5 | dfvd1impr 44566 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ( wvd1 44559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-vd1 44560 |
| This theorem is referenced by: trsspwALT 44807 snssiALTVD 44816 sstrALT2VD 44823 elex2VD 44827 elex22VD 44828 tpid3gVD 44831 trsbcVD 44866 sbcssgVD 44872 csbingVD 44873 onfrALTVD 44880 csbsngVD 44882 csbxpgVD 44883 csbrngVD 44885 csbunigVD 44887 csbfv12gALTVD 44888 ax6e2eqVD 44896 ax6e2ndeqVD 44898 sspwimpVD 44908 sspwimpcfVD 44910 |
| Copyright terms: Public domain | W3C validator |