Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version |
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1931 is gen11 42125 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | dfvd1imp 42084 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
4 | 3 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
5 | dfvd1impr 42085 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ( wvd1 42078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-vd1 42079 |
This theorem is referenced by: trsspwALT 42327 snssiALTVD 42336 sstrALT2VD 42343 elex2VD 42347 elex22VD 42348 tpid3gVD 42351 trsbcVD 42386 sbcssgVD 42392 csbingVD 42393 onfrALTVD 42400 csbsngVD 42402 csbxpgVD 42403 csbrngVD 42405 csbunigVD 42407 csbfv12gALTVD 42408 ax6e2eqVD 42416 ax6e2ndeqVD 42418 sspwimpVD 42428 sspwimpcfVD 42430 |
Copyright terms: Public domain | W3C validator |