| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1927 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2ax5 1937 2mo 2641 euind 3695 sbnfc2 4402 uniintsn 4949 eusvnf 5347 copsex2dv 5454 ssopab2dv 5511 ssrel 5745 ssrelOLD 5746 relssdv 5751 eqrelrdv 5755 eqbrrdv 5756 eqrelrdv2 5758 ssrelrel 5759 iss 6006 iresn0n0 6025 ordelord 6354 suctr 6420 funssres 6560 funun 6562 fununi 6591 fsn 7107 opabresex2d 7442 fvmptopabOLD 7444 ovg 7554 wemoiso 7952 wemoiso2 7953 oprabexd 7954 frrlem9 8273 omeu 8549 qliftfund 8776 eroveu 8785 fpwwe2lem10 10593 addsrmo 11026 mulsrmo 11027 seqf1o 14008 fi1uzind 14472 brfi1indALT 14475 summo 15683 prodmo 15902 pceu 16817 invfun 17726 initoeu2lem2 17977 psss 18539 psgneu 19436 gsumval3eu 19834 hausflimi 23867 vitalilem3 25511 plyexmo 26221 nosupprefixmo 27612 noinfprefixmo 27613 nosupno 27615 noinfno 27630 bdayon 28173 tglineintmo 28569 frgr3vlem1 30202 3vfriswmgrlem 30206 frgr2wwlk1 30258 pjhthmo 31231 chscl 31570 bnj1379 34820 bnj580 34903 bnj1321 35017 acycgr1v 35136 cvmlift2lem12 35301 satffunlem1lem1 35389 satffunlem2lem1 35391 mclsssvlem 35549 mclsax 35556 mclsind 35557 lineintmo 36145 trer 36304 mbfresfi 37660 unirep 37708 iss2 38326 prter1 38872 islpoldN 41478 ismrcd2 42687 ismrc 42689 tfsconcatb0 43333 mnutrd 44269 truniALT 44531 gen12 44608 sspwtrALT 44811 sspwtrALT2 44812 suctrALT 44815 suctrALT2 44826 trintALT 44870 suctrALTcf 44911 suctrALT3 44913 rlimdmafv 47178 rlimdmafv2 47259 opabresex0d 47286 spr0nelg 47477 sprsymrelfvlem 47491 mofsn 48832 thincmo 49417 functhincfun 49438 |
| Copyright terms: Public domain | W3C validator |