| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1927 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2ax5 1937 2mo 2648 euind 3712 sbnfc2 4419 uniintsn 4966 eusvnf 5367 copsex2dv 5474 ssopab2dv 5531 ssrel 5766 ssrelOLD 5767 relssdv 5772 eqrelrdv 5776 eqbrrdv 5777 eqrelrdv2 5779 ssrelrel 5780 iss 6027 iresn0n0 6046 ordelord 6379 suctr 6445 funssres 6585 funun 6587 fununi 6616 fsn 7130 opabresex2d 7465 fvmptopabOLD 7467 ovg 7577 wemoiso 7977 wemoiso2 7978 oprabexd 7979 frrlem9 8298 omeu 8602 qliftfund 8822 eroveu 8831 fpwwe2lem10 10659 addsrmo 11092 mulsrmo 11093 seqf1o 14066 fi1uzind 14530 brfi1indALT 14533 summo 15738 prodmo 15957 pceu 16871 invfun 17782 initoeu2lem2 18033 psss 18595 psgneu 19492 gsumval3eu 19890 hausflimi 23923 vitalilem3 25568 plyexmo 26278 nosupprefixmo 27669 noinfprefixmo 27670 nosupno 27672 noinfno 27687 bdayon 28230 tglineintmo 28626 frgr3vlem1 30259 3vfriswmgrlem 30263 frgr2wwlk1 30315 pjhthmo 31288 chscl 31627 bnj1379 34866 bnj580 34949 bnj1321 35063 acycgr1v 35176 cvmlift2lem12 35341 satffunlem1lem1 35429 satffunlem2lem1 35431 mclsssvlem 35589 mclsax 35596 mclsind 35597 lineintmo 36180 trer 36339 mbfresfi 37695 unirep 37743 iss2 38367 prter1 38902 islpoldN 41508 ismrcd2 42689 ismrc 42691 tfsconcatb0 43335 mnutrd 44271 truniALT 44533 gen12 44610 sspwtrALT 44813 sspwtrALT2 44814 suctrALT 44817 suctrALT2 44828 trintALT 44872 suctrALTcf 44913 suctrALT3 44915 rlimdmafv 47173 rlimdmafv2 47254 opabresex0d 47281 spr0nelg 47457 sprsymrelfvlem 47471 mofsn 48789 thincmo 49281 functhincfun 49302 |
| Copyright terms: Public domain | W3C validator |