| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1927 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2ax5 1937 2mo 2641 euind 3684 sbnfc2 4390 uniintsn 4935 eusvnf 5331 copsex2dv 5437 ssopab2dv 5494 ssrel 5726 relssdv 5731 eqrelrdv 5735 eqbrrdv 5736 eqrelrdv2 5738 ssrelrel 5739 iss 5986 iresn0n0 6005 ordelord 6329 suctr 6395 funssres 6526 funun 6528 fununi 6557 fsn 7069 ovg 7514 wemoiso 7908 wemoiso2 7909 oprabexd 7910 frrlem9 8227 omeu 8503 qliftfund 8730 eroveu 8739 fpwwe2lem10 10534 addsrmo 10967 mulsrmo 10968 seqf1o 13950 fi1uzind 14414 brfi1indALT 14417 summo 15624 prodmo 15843 pceu 16758 invfun 17671 initoeu2lem2 17922 psss 18486 psgneu 19385 gsumval3eu 19783 hausflimi 23865 vitalilem3 25509 plyexmo 26219 nosupprefixmo 27610 noinfprefixmo 27611 nosupno 27613 noinfno 27628 bdayon 28180 tglineintmo 28591 frgr3vlem1 30221 3vfriswmgrlem 30225 frgr2wwlk1 30277 pjhthmo 31250 chscl 31589 bnj1379 34813 bnj580 34896 bnj1321 35010 acycgr1v 35142 cvmlift2lem12 35307 satffunlem1lem1 35395 satffunlem2lem1 35397 mclsssvlem 35555 mclsax 35562 mclsind 35563 lineintmo 36151 trer 36310 mbfresfi 37666 unirep 37714 iss2 38332 prter1 38878 islpoldN 41483 ismrcd2 42692 ismrc 42694 tfsconcatb0 43337 mnutrd 44273 truniALT 44535 gen12 44612 sspwtrALT 44815 sspwtrALT2 44816 suctrALT 44819 suctrALT2 44830 trintALT 44874 suctrALTcf 44915 suctrALT3 44917 rlimdmafv 47181 rlimdmafv2 47262 opabresex0d 47289 spr0nelg 47480 sprsymrelfvlem 47494 mofsn 48848 thincmo 49433 functhincfun 49454 |
| Copyright terms: Public domain | W3C validator |