Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2203 and 19.21v 1943. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1931 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem is referenced by: 2ax5 1941 2mo 2650 euind 3654 sbnfc2 4367 uniintsn 4915 eusvnf 5310 ssopab2dv 5457 ssrel 5683 relssdv 5687 eqrelrdv 5691 eqbrrdv 5692 eqrelrdv2 5694 ssrelrel 5695 iss 5932 iresn0n0 5952 ordelord 6273 suctr 6334 funssres 6462 funun 6464 fununi 6493 fsn 6989 opabresex2d 7307 fvmptopab 7308 ovg 7415 wemoiso 7789 wemoiso2 7790 oprabexd 7791 frrlem9 8081 omeu 8378 qliftfund 8550 eroveu 8559 fpwwe2lem10 10327 addsrmo 10760 mulsrmo 10761 seqf1o 13692 fi1uzind 14139 brfi1indALT 14142 summo 15357 prodmo 15574 pceu 16475 invfun 17393 initoeu2lem2 17646 psss 18213 psgneu 19029 gsumval3eu 19420 hausflimi 23039 vitalilem3 24679 plyexmo 25378 tglineintmo 26907 frgr3vlem1 28538 3vfriswmgrlem 28542 frgr2wwlk1 28594 pjhthmo 29565 chscl 29904 bnj1379 32710 bnj580 32793 bnj1321 32907 acycgr1v 33011 cvmlift2lem12 33176 satffunlem1lem1 33264 satffunlem2lem1 33266 mclsssvlem 33424 mclsax 33431 mclsind 33432 nosupprefixmo 33830 noinfprefixmo 33831 nosupno 33833 noinfno 33848 lineintmo 34386 trer 34432 mbfresfi 35750 unirep 35798 iss2 36406 prter1 36820 islpoldN 39425 ismrcd2 40437 ismrc 40439 mnutrd 41787 truniALT 42050 gen12 42127 sspwtrALT 42331 sspwtrALT2 42332 suctrALT 42335 suctrALT2 42346 trintALT 42390 suctrALTcf 42431 suctrALT3 42433 rlimdmafv 44556 rlimdmafv2 44637 opabresex0d 44664 spr0nelg 44816 sprsymrelfvlem 44830 mofsn 46059 thincmo 46198 |
Copyright terms: Public domain | W3C validator |