Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2200 and 19.21v 1942. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1930 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem is referenced by: 2ax5 1940 2mo 2650 euind 3659 sbnfc2 4370 uniintsn 4918 eusvnf 5315 ssopab2dv 5464 ssrel 5693 ssrelOLD 5694 relssdv 5698 eqrelrdv 5702 eqbrrdv 5703 eqrelrdv2 5705 ssrelrel 5706 iss 5943 iresn0n0 5963 ordelord 6288 suctr 6349 funssres 6478 funun 6480 fununi 6509 fsn 7007 opabresex2d 7328 fvmptopabOLD 7330 ovg 7437 wemoiso 7816 wemoiso2 7817 oprabexd 7818 frrlem9 8110 omeu 8416 qliftfund 8592 eroveu 8601 fpwwe2lem10 10396 addsrmo 10829 mulsrmo 10830 seqf1o 13764 fi1uzind 14211 brfi1indALT 14214 summo 15429 prodmo 15646 pceu 16547 invfun 17476 initoeu2lem2 17730 psss 18298 psgneu 19114 gsumval3eu 19505 hausflimi 23131 vitalilem3 24774 plyexmo 25473 tglineintmo 27003 frgr3vlem1 28637 3vfriswmgrlem 28641 frgr2wwlk1 28693 pjhthmo 29664 chscl 30003 bnj1379 32810 bnj580 32893 bnj1321 33007 acycgr1v 33111 cvmlift2lem12 33276 satffunlem1lem1 33364 satffunlem2lem1 33366 mclsssvlem 33524 mclsax 33531 mclsind 33532 nosupprefixmo 33903 noinfprefixmo 33904 nosupno 33906 noinfno 33921 lineintmo 34459 trer 34505 mbfresfi 35823 unirep 35871 iss2 36479 prter1 36893 islpoldN 39498 ismrcd2 40521 ismrc 40523 mnutrd 41898 truniALT 42161 gen12 42238 sspwtrALT 42442 sspwtrALT2 42443 suctrALT 42446 suctrALT2 42457 trintALT 42501 suctrALTcf 42542 suctrALT3 42544 rlimdmafv 44669 rlimdmafv2 44750 opabresex0d 44777 spr0nelg 44928 sprsymrelfvlem 44942 mofsn 46171 thincmo 46310 |
Copyright terms: Public domain | W3C validator |