![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2198 and 19.21v 1940. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1928 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem is referenced by: 2ax5 1938 2mo 2642 euind 3719 sbnfc2 4435 uniintsn 4990 eusvnf 5389 ssopab2dv 5550 ssrel 5781 ssrelOLD 5782 relssdv 5787 eqrelrdv 5791 eqbrrdv 5792 eqrelrdv2 5794 ssrelrel 5795 iss 6034 iresn0n0 6052 ordelord 6385 suctr 6449 funssres 6591 funun 6593 fununi 6622 fsn 7134 opabresex2d 7464 fvmptopabOLD 7466 ovg 7574 wemoiso 7962 wemoiso2 7963 oprabexd 7964 frrlem9 8281 omeu 8587 qliftfund 8799 eroveu 8808 fpwwe2lem10 10637 addsrmo 11070 mulsrmo 11071 seqf1o 14013 fi1uzind 14462 brfi1indALT 14465 summo 15667 prodmo 15884 pceu 16783 invfun 17715 initoeu2lem2 17969 psss 18537 psgneu 19415 gsumval3eu 19813 hausflimi 23704 vitalilem3 25359 plyexmo 26062 nosupprefixmo 27439 noinfprefixmo 27440 nosupno 27442 noinfno 27457 tglineintmo 28160 frgr3vlem1 29793 3vfriswmgrlem 29797 frgr2wwlk1 29849 pjhthmo 30822 chscl 31161 bnj1379 34139 bnj580 34222 bnj1321 34336 acycgr1v 34438 cvmlift2lem12 34603 satffunlem1lem1 34691 satffunlem2lem1 34693 mclsssvlem 34851 mclsax 34858 mclsind 34859 lineintmo 35433 trer 35504 mbfresfi 36837 unirep 36885 iss2 37516 prter1 38052 islpoldN 40658 ismrcd2 41739 ismrc 41741 tfsconcatb0 42396 mnutrd 43341 truniALT 43604 gen12 43681 sspwtrALT 43885 sspwtrALT2 43886 suctrALT 43889 suctrALT2 43900 trintALT 43944 suctrALTcf 43985 suctrALT3 43987 rlimdmafv 46183 rlimdmafv2 46264 opabresex0d 46291 spr0nelg 46442 sprsymrelfvlem 46456 mofsn 47597 thincmo 47736 |
Copyright terms: Public domain | W3C validator |