| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1927 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2ax5 1937 2mo 2641 euind 3692 sbnfc2 4398 uniintsn 4945 eusvnf 5342 copsex2dv 5449 ssopab2dv 5506 ssrel 5737 relssdv 5742 eqrelrdv 5746 eqbrrdv 5747 eqrelrdv2 5749 ssrelrel 5750 iss 5995 iresn0n0 6014 ordelord 6342 suctr 6408 funssres 6544 funun 6546 fununi 6575 fsn 7089 ovg 7534 wemoiso 7931 wemoiso2 7932 oprabexd 7933 frrlem9 8250 omeu 8526 qliftfund 8753 eroveu 8762 fpwwe2lem10 10569 addsrmo 11002 mulsrmo 11003 seqf1o 13984 fi1uzind 14448 brfi1indALT 14451 summo 15659 prodmo 15878 pceu 16793 invfun 17706 initoeu2lem2 17957 psss 18521 psgneu 19420 gsumval3eu 19818 hausflimi 23900 vitalilem3 25544 plyexmo 26254 nosupprefixmo 27645 noinfprefixmo 27646 nosupno 27648 noinfno 27663 bdayon 28213 tglineintmo 28622 frgr3vlem1 30252 3vfriswmgrlem 30256 frgr2wwlk1 30308 pjhthmo 31281 chscl 31620 bnj1379 34813 bnj580 34896 bnj1321 35010 acycgr1v 35129 cvmlift2lem12 35294 satffunlem1lem1 35382 satffunlem2lem1 35384 mclsssvlem 35542 mclsax 35549 mclsind 35550 lineintmo 36138 trer 36297 mbfresfi 37653 unirep 37701 iss2 38319 prter1 38865 islpoldN 41471 ismrcd2 42680 ismrc 42682 tfsconcatb0 43326 mnutrd 44262 truniALT 44524 gen12 44601 sspwtrALT 44804 sspwtrALT2 44805 suctrALT 44808 suctrALT2 44819 trintALT 44863 suctrALTcf 44904 suctrALT3 44906 rlimdmafv 47171 rlimdmafv2 47252 opabresex0d 47279 spr0nelg 47470 sprsymrelfvlem 47484 mofsn 48825 thincmo 49410 functhincfun 49431 |
| Copyright terms: Public domain | W3C validator |