![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2201 and 19.21v 1943. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1931 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem is referenced by: 2ax5 1941 2mo 2645 euind 3721 sbnfc2 4437 uniintsn 4992 eusvnf 5391 ssopab2dv 5552 ssrel 5783 ssrelOLD 5784 relssdv 5789 eqrelrdv 5793 eqbrrdv 5794 eqrelrdv2 5796 ssrelrel 5797 iss 6036 iresn0n0 6054 ordelord 6387 suctr 6451 funssres 6593 funun 6595 fununi 6624 fsn 7133 opabresex2d 7462 fvmptopabOLD 7464 ovg 7572 wemoiso 7960 wemoiso2 7961 oprabexd 7962 frrlem9 8279 omeu 8585 qliftfund 8797 eroveu 8806 fpwwe2lem10 10635 addsrmo 11068 mulsrmo 11069 seqf1o 14009 fi1uzind 14458 brfi1indALT 14461 summo 15663 prodmo 15880 pceu 16779 invfun 17711 initoeu2lem2 17965 psss 18533 psgneu 19374 gsumval3eu 19772 hausflimi 23484 vitalilem3 25127 plyexmo 25826 nosupprefixmo 27203 noinfprefixmo 27204 nosupno 27206 noinfno 27221 tglineintmo 27893 frgr3vlem1 29526 3vfriswmgrlem 29530 frgr2wwlk1 29582 pjhthmo 30555 chscl 30894 bnj1379 33841 bnj580 33924 bnj1321 34038 acycgr1v 34140 cvmlift2lem12 34305 satffunlem1lem1 34393 satffunlem2lem1 34395 mclsssvlem 34553 mclsax 34560 mclsind 34561 lineintmo 35129 trer 35201 mbfresfi 36534 unirep 36582 iss2 37213 prter1 37749 islpoldN 40355 ismrcd2 41437 ismrc 41439 tfsconcatb0 42094 mnutrd 43039 truniALT 43302 gen12 43379 sspwtrALT 43583 sspwtrALT2 43584 suctrALT 43587 suctrALT2 43598 trintALT 43642 suctrALTcf 43683 suctrALT3 43685 rlimdmafv 45885 rlimdmafv2 45966 opabresex0d 45993 spr0nelg 46144 sprsymrelfvlem 46158 mofsn 47510 thincmo 47649 |
Copyright terms: Public domain | W3C validator |