| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1927 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2ax5 1937 2mo 2641 euind 3692 sbnfc2 4398 uniintsn 4945 eusvnf 5342 copsex2dv 5449 ssopab2dv 5506 ssrel 5737 relssdv 5742 eqrelrdv 5746 eqbrrdv 5747 eqrelrdv2 5749 ssrelrel 5750 iss 5995 iresn0n0 6014 ordelord 6342 suctr 6408 funssres 6544 funun 6546 fununi 6575 fsn 7089 ovg 7534 wemoiso 7931 wemoiso2 7932 oprabexd 7933 frrlem9 8250 omeu 8526 qliftfund 8753 eroveu 8762 fpwwe2lem10 10571 addsrmo 11004 mulsrmo 11005 seqf1o 13986 fi1uzind 14450 brfi1indALT 14453 summo 15660 prodmo 15879 pceu 16794 invfun 17707 initoeu2lem2 17958 psss 18522 psgneu 19421 gsumval3eu 19819 hausflimi 23901 vitalilem3 25545 plyexmo 26255 nosupprefixmo 27646 noinfprefixmo 27647 nosupno 27649 noinfno 27664 bdayon 28214 tglineintmo 28623 frgr3vlem1 30253 3vfriswmgrlem 30257 frgr2wwlk1 30309 pjhthmo 31282 chscl 31621 bnj1379 34814 bnj580 34897 bnj1321 35011 acycgr1v 35130 cvmlift2lem12 35295 satffunlem1lem1 35383 satffunlem2lem1 35385 mclsssvlem 35543 mclsax 35550 mclsind 35551 lineintmo 36139 trer 36298 mbfresfi 37654 unirep 37702 iss2 38320 prter1 38866 islpoldN 41472 ismrcd2 42681 ismrc 42683 tfsconcatb0 43327 mnutrd 44263 truniALT 44525 gen12 44602 sspwtrALT 44805 sspwtrALT2 44806 suctrALT 44809 suctrALT2 44820 trintALT 44864 suctrALTcf 44905 suctrALT3 44907 rlimdmafv 47172 rlimdmafv2 47253 opabresex0d 47280 spr0nelg 47471 sprsymrelfvlem 47485 mofsn 48826 thincmo 49411 functhincfun 49432 |
| Copyright terms: Public domain | W3C validator |