| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1927 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2ax5 1937 2mo 2642 euind 3698 sbnfc2 4405 uniintsn 4952 eusvnf 5350 copsex2dv 5457 ssopab2dv 5514 ssrel 5748 ssrelOLD 5749 relssdv 5754 eqrelrdv 5758 eqbrrdv 5759 eqrelrdv2 5761 ssrelrel 5762 iss 6009 iresn0n0 6028 ordelord 6357 suctr 6423 funssres 6563 funun 6565 fununi 6594 fsn 7110 opabresex2d 7445 fvmptopabOLD 7447 ovg 7557 wemoiso 7955 wemoiso2 7956 oprabexd 7957 frrlem9 8276 omeu 8552 qliftfund 8779 eroveu 8788 fpwwe2lem10 10600 addsrmo 11033 mulsrmo 11034 seqf1o 14015 fi1uzind 14479 brfi1indALT 14482 summo 15690 prodmo 15909 pceu 16824 invfun 17733 initoeu2lem2 17984 psss 18546 psgneu 19443 gsumval3eu 19841 hausflimi 23874 vitalilem3 25518 plyexmo 26228 nosupprefixmo 27619 noinfprefixmo 27620 nosupno 27622 noinfno 27637 bdayon 28180 tglineintmo 28576 frgr3vlem1 30209 3vfriswmgrlem 30213 frgr2wwlk1 30265 pjhthmo 31238 chscl 31577 bnj1379 34827 bnj580 34910 bnj1321 35024 acycgr1v 35143 cvmlift2lem12 35308 satffunlem1lem1 35396 satffunlem2lem1 35398 mclsssvlem 35556 mclsax 35563 mclsind 35564 lineintmo 36152 trer 36311 mbfresfi 37667 unirep 37715 iss2 38333 prter1 38879 islpoldN 41485 ismrcd2 42694 ismrc 42696 tfsconcatb0 43340 mnutrd 44276 truniALT 44538 gen12 44615 sspwtrALT 44818 sspwtrALT2 44819 suctrALT 44822 suctrALT2 44833 trintALT 44877 suctrALTcf 44918 suctrALT3 44920 rlimdmafv 47182 rlimdmafv2 47263 opabresex0d 47290 spr0nelg 47481 sprsymrelfvlem 47495 mofsn 48836 thincmo 49421 functhincfun 49442 |
| Copyright terms: Public domain | W3C validator |