![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1938. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1926 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem is referenced by: 2ax5 1936 2mo 2651 euind 3746 sbnfc2 4462 uniintsn 5009 eusvnf 5410 ssopab2dv 5570 ssrel 5806 ssrelOLD 5807 relssdv 5812 eqrelrdv 5816 eqbrrdv 5817 eqrelrdv2 5819 ssrelrel 5820 iss 6064 iresn0n0 6083 ordelord 6417 suctr 6481 funssres 6622 funun 6624 fununi 6653 fsn 7169 opabresex2d 7503 fvmptopabOLD 7505 ovg 7615 wemoiso 8014 wemoiso2 8015 oprabexd 8016 frrlem9 8335 omeu 8641 qliftfund 8861 eroveu 8870 fpwwe2lem10 10709 addsrmo 11142 mulsrmo 11143 seqf1o 14094 fi1uzind 14556 brfi1indALT 14559 summo 15765 prodmo 15984 pceu 16893 invfun 17825 initoeu2lem2 18082 psss 18650 psgneu 19548 gsumval3eu 19946 hausflimi 24009 vitalilem3 25664 plyexmo 26373 nosupprefixmo 27763 noinfprefixmo 27764 nosupno 27766 noinfno 27781 tglineintmo 28668 frgr3vlem1 30305 3vfriswmgrlem 30309 frgr2wwlk1 30361 pjhthmo 31334 chscl 31673 copsex2dv 32628 bnj1379 34806 bnj580 34889 bnj1321 35003 acycgr1v 35117 cvmlift2lem12 35282 satffunlem1lem1 35370 satffunlem2lem1 35372 mclsssvlem 35530 mclsax 35537 mclsind 35538 lineintmo 36121 trer 36282 mbfresfi 37626 unirep 37674 iss2 38300 prter1 38835 islpoldN 41441 ismrcd2 42655 ismrc 42657 tfsconcatb0 43306 mnutrd 44249 truniALT 44512 gen12 44589 sspwtrALT 44793 sspwtrALT2 44794 suctrALT 44797 suctrALT2 44808 trintALT 44852 suctrALTcf 44893 suctrALT3 44895 rlimdmafv 47092 rlimdmafv2 47173 opabresex0d 47200 spr0nelg 47350 sprsymrelfvlem 47364 mofsn 48557 thincmo 48696 |
Copyright terms: Public domain | W3C validator |