MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralidmw Structured version   Visualization version   GIF version

Theorem ralidmw 4443
Description: Idempotent law for restricted quantifier. Weak version of ralidm 4447, which does not require ax-10 2140, ax-12 2174, but requires ax-8 2111. (Contributed by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
ralidmw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
ralidmw (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ralidmw
StepHypRef Expression
1 df-ral 3070 . . . . 5 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
21imbi2i 335 . . . 4 ((𝑥𝐴 → ∀𝑥𝐴 𝜑) ↔ (𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)))
32albii 1825 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)))
4 pm2.21 123 . . . . . 6 𝑥𝐴 → (𝑥𝐴𝜑))
5 eleq1w 2822 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
6 ralidmw.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
75, 6imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
87spw 2040 . . . . . 6 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴𝜑))
94, 8ja 186 . . . . 5 ((𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)) → (𝑥𝐴𝜑))
109alimi 1817 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)) → ∀𝑥(𝑥𝐴𝜑))
117hba1w 2053 . . . . 5 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥𝑥(𝑥𝐴𝜑))
12 ax-1 6 . . . . 5 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)))
1311, 12alrimih 1829 . . . 4 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)))
1410, 13impbii 208 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)) ↔ ∀𝑥(𝑥𝐴𝜑))
153, 14bitri 274 . 2 (∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑) ↔ ∀𝑥(𝑥𝐴𝜑))
16 df-ral 3070 . 2 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑))
1715, 16, 13bitr4i 302 1 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2109  wral 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-clel 2817  df-ral 3070
This theorem is referenced by:  dfwe2  7615
  Copyright terms: Public domain W3C validator