MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab Structured version   Visualization version   GIF version

Theorem hbab 2727
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.) Add disjoint variable condition to avoid ax-13 2373. See hbabg 2728 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypothesis
Ref Expression
hbab.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbab (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbab
StepHypRef Expression
1 df-clab 2717 . 2 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
2 hbab.1 . . 3 (𝜑 → ∀𝑥𝜑)
32hbsbw 2175 . 2 ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)
41, 3hbxfrbi 1832 1 (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541  [wsb 2072  wcel 2112  {cab 2716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-11 2160
This theorem depends on definitions:  df-bi 210  df-ex 1788  df-sb 2073  df-clab 2717
This theorem is referenced by:  nfsab  2729  bnj1441  32695  bnj1309  32877
  Copyright terms: Public domain W3C validator