Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.) Add disjoint variable condition to avoid ax-13 2373. See hbabg 2728 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
hbab.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbab | ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2717 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
2 | hbab.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | hbsbw 2175 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑) |
4 | 1, 3 | hbxfrbi 1832 | 1 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 [wsb 2072 ∈ wcel 2112 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-11 2160 |
This theorem depends on definitions: df-bi 210 df-ex 1788 df-sb 2073 df-clab 2717 |
This theorem is referenced by: nfsab 2729 bnj1441 32695 bnj1309 32877 |
Copyright terms: Public domain | W3C validator |