MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab1OLD Structured version   Visualization version   GIF version

Theorem hbab1OLD 2726
Description: Obsolete version of hbab1 2725 as of 25-Oct-2024. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbab1OLD (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem hbab1OLD
StepHypRef Expression
1 df-clab 2717 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 hbs1 2272 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
31, 2hbxfrbi 1832 1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541  [wsb 2072  wcel 2112  {cab 2716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2143  ax-12 2177
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator