Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbab1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of hbab1 2725 as of 25-Oct-2024. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbab1OLD | ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2717 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | hbs1 2272 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | hbxfrbi 1832 | 1 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 [wsb 2072 ∈ wcel 2112 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2143 ax-12 2177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |