|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1441 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Add disjoint variable condition to avoid ax-13 2376. See bnj1441g 34856 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1441.1 | ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴) | 
| bnj1441.2 | ⊢ (𝜑 → ∀𝑦𝜑) | 
| Ref | Expression | 
|---|---|
| bnj1441 | ⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → ∀𝑦 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rab 3436 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | bnj1441.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴) | |
| 3 | bnj1441.2 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 4 | 2, 3 | hban 2299 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∀𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 5 | 4 | hbab 2724 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ∀𝑦 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | 
| 6 | 1, 5 | hbxfreq 2871 | 1 ⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → ∀𝑦 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 {cab 2713 {crab 3435 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |