| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfsabg 2722 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfsab | ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2198 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbab 2719 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
| 4 | 3 | nf5i 2149 | 1 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 |
| This theorem is referenced by: nfab 2900 oaun3lem1 43406 upbdrech 45345 ssfiunibd 45349 |
| Copyright terms: Public domain | W3C validator |