Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2379. See nfsabg 2749 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfsab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsab | ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2193 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbab 2746 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
4 | 3 | nf5i 2147 | 1 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1785 ∈ wcel 2111 {cab 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 |
This theorem is referenced by: nfab 2925 upbdrech 42305 ssfiunibd 42309 |
Copyright terms: Public domain | W3C validator |