![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2365. See nfsabg 2716 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfsab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsab | ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2183 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbab 2713 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
4 | 3 | nf5i 2134 | 1 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1777 ∈ wcel 2098 {cab 2702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-11 2146 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 |
This theorem is referenced by: nfab 2898 oaun3lem1 42868 upbdrech 44750 ssfiunibd 44754 |
Copyright terms: Public domain | W3C validator |