MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab1 Structured version   Visualization version   GIF version

Theorem hbab1 2710
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2024.)
Assertion
Ref Expression
hbab1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem hbab1
StepHypRef Expression
1 nfsab1 2709 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nf5ri 2180 1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wcel 2098  {cab 2701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702
This theorem is referenced by:  eqabbOLD  2866  bnj1317  34323  bnj1318  34527  bj-nfsab1  36185
  Copyright terms: Public domain W3C validator