|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbalg | Structured version Visualization version GIF version | ||
| Description: Closed form of hbal 2167. Derived from hbalgVD 44925. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hbalg | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alim 1810 | . . 3 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 2 | ax-11 2157 | . . 3 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | 
| 4 | 3 | axc4i 2322 | 1 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: hbexgVD 44926 | 
| Copyright terms: Public domain | W3C validator |