| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbexg | Structured version Visualization version GIF version | ||
| Description: Closed form of nfex 2324. Derived from hbexgVD 44926. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 12-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbexg | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa2 2176 | . . 3 ⊢ Ⅎ𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) | |
| 2 | sp 2183 | . . . . . . 7 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) | |
| 3 | 2 | alimi 1811 | . . . . . 6 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 4 | nf5 2282 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| 6 | 1, 5 | nfexd 2329 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥∃𝑦𝜑) |
| 7 | nf5 2282 | . . . 4 ⊢ (Ⅎ𝑥∃𝑦𝜑 ↔ ∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| 9 | 1, 8 | alrimi 2213 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| 10 | alcom 2159 | . 2 ⊢ (∀𝑦∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) ↔ ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) | |
| 11 | 9, 10 | sylib 218 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |