Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbexg | Structured version Visualization version GIF version |
Description: Closed form of nfex 2322. Derived from hbexgVD 42415. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 12-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbexg | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa2 2172 | . . 3 ⊢ Ⅎ𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) | |
2 | sp 2178 | . . . . . . 7 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) | |
3 | 2 | alimi 1815 | . . . . . 6 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
4 | nf5 2282 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
5 | 3, 4 | sylibr 233 | . . . . 5 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
6 | 1, 5 | nfexd 2327 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥∃𝑦𝜑) |
7 | nf5 2282 | . . . 4 ⊢ (Ⅎ𝑥∃𝑦𝜑 ↔ ∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) | |
8 | 6, 7 | sylib 217 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
9 | 1, 8 | alrimi 2209 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
10 | alcom 2158 | . 2 ⊢ (∀𝑦∀𝑥(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) ↔ ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) | |
11 | 9, 10 | sylib 217 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |